
Let's fight against the machines!
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Henry Pereira · Aug 2, 2021 8m read

Let's fight against the machines!

Easy, easy, I'm not promoting a war against the machines in the best sci-fi way to avoid world domination of Ultron
or Skynet.
Not yet, not yet �

I invite you to challenge the machines through the creation of a very simple game using ObjectScript with
embedded Python.

I have to say that I got super excited with the feature of Embedded Python on InterSystems IRIS, it's incredible the
bunch of possibilities that opens to create fantastic apps.

Let's build a tic tac toe, the rules are quite simple and I believe that everyone knows how to play.

That's what saved me of the tedium in my childhood during long car trips with family before chidren have
cellphones or tablets, nothing like challenge my siblings to play some matches on the blurry glass.

So buckle up and let's go!

Rules
As said, the rules are quite simple:

only 2 players for set
it's played in turns in a grid of 3x3
the human player will always be the letter X and the computer the letter O
the players will only be able to put the letters in the empty spaces
the first to complete a sequence of 3 equal letters on the horizontal, or on vertical or on diagonal, is the
winner
when the 9 spaces are occupied that will be draw and the end of the match

All the mechanism and the rules we will write on ObjectScript, the mechanism of the computer player will be written
in Python.

Page 1 of 6

https://community.intersystems.com/user/henry-pereira

Let's fight against the machines!
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's get the hands dirty
We will control the board in a global, in wich each row will be in a node and each column in a piece.

Our first method is to initiate the board, to make it easy I will initiate the global already with the nodes(rows A, B
and C) and with the 3 pieces:

/// Iniciate a New Game
ClassMethod NewGame() As %Status
{
 Set sc = $$$OK
 Kill ^TicTacToe
 Set ^TicTacToe("A") = "^^"
 Set ^TicTacToe("B") = "^^"
 Set ^TicTacToe("C") = "^^"
 Return sc
}

at this moment we will create a method to add the letters in the empty spaces, for this each player will give the
location of the space on the board.

Each row a letter and each column a number, to put the X in the middle, for example, we pass B2 and the letter X
to the method.

ClassMethod MakeMove(move As %String, player As %String) As %Boolean
{
 Set $Piece(^TicTacToe($Extract(move,1,1)),"^",$Extract(move,2,2)) = player
}

Let's validate if the coordination is valid, the most simple way I see is using a regular expression:

ClassMethod CheckMoveIsValid(move As %String) As %Boolean
{
 Set regex = ##class(%Regex.Matcher).%New("(A|B|C){1}[0-9]{1}")
 Set regex.Text = $ZCONVERT(move,"U")
 Return regex.Locate()
}

we need to garantee that the selected space is empty

ClassMethod IsSpaceFree(move As %String) As %Boolean
{
 Quit ($Piece(^TicTacToe($Extract(move,1,1)),"^",$Extract(move,2,2)) = "")
}

Nooice!

Now let's check if any player won the set or if the game is already finished, for this let's create the method
CheckGameResult.

Page 2 of 6

Let's fight against the machines!
Published on InterSystems Developer Community (https://community.intersystems.com)

First we check if there was any winner completing by the horizontal, we will use a list with the rows and a simple
$Find solves

 Set lines = $ListBuild("A","B","C")
 // Check Horizontal
 For i = 1:1:3 {
 Set line = ^TicTacToe($List(lines, i))
 If (($Find(line,"X^X^X")>0)||($Find(line,"O^O^O")>0)) {
 Return $Piece(^TicTacToe($List(lines, i)),"^", 1)_" won"
 }
 }

With another For we check the vertical

For j = 1:1:3 {
 If (($Piece(^TicTacToe($List(lines, 1)),"^",j)'="") &&
 ($Piece(^TicTacToe($List(lines, 1)),"^",j)=$Piece(^TicTacToe($List(lines, 2))
,"^",j)) &&
 ($Piece(^TicTacToe($List(lines, 2)),"^",j)=$Piece(^TicTacToe($List(lines, 3))
,"^",j))) {
 Return $Piece(^TicTacToe($List(lines, 1)),"^",j)_" won"
 }
 }

to check the diagonal:

 If (($Piece(^TicTacToe($List(lines, 2)),"^",2)'="") &&
 (
 (($Piece(^TicTacToe($List(lines, 1)),"^",1)=$Piece(^TicTacToe($List(lines, 2)
),"^",2)) &&
 ($Piece(^TicTacToe($List(lines, 2)),"^",2)=$Piece(^TicTacToe($List(lines, 3
)),"^",3)))||
 (($Piece(^TicTacToe($List(lines, 1)),"^",3)=$Piece(^TicTacToe($List(lines, 2)
),"^",2)) &&
 ($Piece(^TicTacToe($List(lines, 2)),"^",2)=$Piece(^TicTacToe($List(lines, 3))
,"^",1)))
)) {
 Return ..WhoWon($Piece(^TicTacToe($List(lines, 2)),"^",2))
 }

at last, we check if there was a draw

 Set gameStatus = ""
 For i = 1:1:3 {
 For j = 1:1:3 {
 Set:($Piece(^TicTacToe($List(lines, i)),"^",j)="") gameStatus = "Not Done"
 }
 }
 Set:(gameStatus = "") gameStatus = "Draw"

Page 3 of 6

Let's fight against the machines!
Published on InterSystems Developer Community (https://community.intersystems.com)

Great!

It's time to build the machine
Let's create our opponent, we need to create an algorithm able to calculate all the available movements and use a
metric to know wich is the best movement.

The ideal is to use an algorithm of decision called MiniMax (Wikipedia: MiniMax)

The MiniMax algorithm is a decision rule used in games theory, decision theory and artificial intelligence.

Basicaly, we need to know how to play assuming wich will be the possible movements of the opponent and catch
the best scene possible.

In details, we take the actual scene and recursively check the result of the movement of each player, in case the
computer wins the match we score with +1, in case it looses we then score with -1 and 0 if draw.

If it is not the end of the game, we open another tree with the current game state. After that, we find the move with
the maximum value to the computer and the minimum to the opponent.

See the diagram below, there are 3 available movements: B2, C1 and C3.

Choosing C1 or C3, the opponent has a chance to win in the next turn, but if choosing B2 dosen't matter the
movement the opponent chooses, the machine wins the match.

It's like have the time stone in our hands and try to find the best timeline.

Converting to python

ClassMethod ComputerMove() As %String [Language = python]
{
 import iris
 from math import inf as infinity
 computerLetter = "O"
 playerLetter = "X"

 def isBoardFull(board):
 for i in range(0, 8):
 if isSpaceFree(board, i):
 return False
 return True

 def makeMove(board, letter, move):
 board[move] = letter

 def isWinner(brd, let):
 # check horizontals
 if ((brd[0] == brd[1] == brd[2] == let) or \
 (brd[3] == brd[4] == brd[5] == let) or \
 (brd[6] == brd[7] == brd[8] == let)):
 return True
 # check verticals
 if ((brd[0] == brd[3] == brd[6] == let) or \
 (brd[1] == brd[4] == brd[7] == let) or \
 (brd[2] == brd[5] == brd[8] == let)):
 return True
 # check diagonals

Page 4 of 6

https://en.wikipedia.org/wiki/Minimax#Minimax_algorithm_with_alternate_moves

Let's fight against the machines!
Published on InterSystems Developer Community (https://community.intersystems.com)

 if ((brd[0] == brd[4] == brd[8] == let) or \
 (brd[2] == brd[4] == brd[6] == let)):
 return True
 return False

 def isSpaceFree(board, move):
 #Retorna true se o espaco solicitado esta livre no quadro
 if(board[move] == ''):
 return True
 else:
 return False

 def copyGameState(board):
 dupeBoard = []
 for i in board:
 dupeBoard.append(i)
 return dupeBoard

 def getBestMove(state, player):
 done = "Done" if isBoardFull(state) else ""
 if done == "Done" and isWinner(state, computerLetter): # If Computer won
 return 1
 elif done == "Done" and isWinner(state, playerLetter): # If Human won
 return -1
 elif done == "Done": # Draw condition
 return 0

 # Minimax Algorithm
 moves = []
 empty_cells = []
 for i in range(0,9):
 if state[i] == '':
 empty_cells.append(i)

 for empty_cell in empty_cells:
 move = {}
 move['index'] = empty_cell
 new_state = copyGameState(state)
 makeMove(new_state, player, empty_cell)

 if player == computerLetter:
 result = getBestMove(new_state, playerLetter)
 move['score'] = result
 else:
 result = getBestMove(new_state, computerLetter)
 move['score'] = result

 moves.append(move)

 # Find best move
 best_move = None
 if player == computerLetter:
 best = -infinity
 for move in moves:
 if move['score'] > best:
 best = move['score']
 best_move = move['index']
 else:
 best = infinity

Page 5 of 6

Let's fight against the machines!
Published on InterSystems Developer Community (https://community.intersystems.com)

 for move in moves:
 if move['score'] < best:
 best = move['score']
 best_move = move['index']

 return best_move

 lines = ['A', 'B', 'C']
 game = []
 current_game_state = iris.gref("^TicTacToe")

 for line in lines:
 for cell in current_game_state[line].split("^"):
 game.append(cell)

 cellNumber = getBestMove(game, computerLetter)
 next_move = lines[int(cellNumber/3)]+ str(int(cellNumber%3)+1)
 return next_move
}

First I convert the global in a simple array, ignoring columns and rows, leting flat to facilitate.

At each analised move we call the method copyGameState that, as the name says, copys the state of the game in
that moment, where we apply the MiniMax.

The method getBestMove that will be called recursevely until ends the game finding a winner or draw.

First the empty spaces are mapped and we verify the result of each move, changing between the players.

The results are stored in move['score'] to, after we check all the possibilities, find the best move.

I hope you have had fun, it is possible to improve the intelligence using algorithms like Alpha-Beta
Pruning(Wikipedia: AlphaBeta Pruning) or neural network, just take care not to give life to Skynet.

Feel free to leave any comments or questions.

That's all folks

Complete source code:
InterSystems Iris version 2021.1.0PYTHON

#AI #Best Practices #Embedded Python #Python #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/lets-fight-against-machines

Page 6 of 6

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://gist.github.com/henryhamon/5be7e2147955bec0f623b718cfd83a9d
https://community.intersystems.com/tags/ai
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/embedded-python
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/lets-fight-against-machines

