
Reserving a License
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 David Hockenbroch · Feb 19 7m read

Reserving a License
“I have been waiting for thirty seconds for service. This is outrageous! I am leaving!”

“I am very sorry to hear that, sir. Perhaps, next time, you should make a reservation.”

If you heard that comment at your favorite restaurant, you would think the person saying it was being
ridiculous. However, in the context of your API, it makes perfect sense. Just like your favorite eatery,
your API has some regular patrons who, as you know, will be visiting one day or another. It would be
great to be able to make a standing reservation for them as well.

It will involve a couple of IRIS fundamentals. First, we will have to gain an understanding of the
%SYSTEM.License interface. This is an interface provided to obtain information about the license usage
for an instance of IRIS. Second, we will have to learn about the %CSP.SessionEvents class. This class
allows us to override various methods that are called throughout the lifecycle of a CSP session.

We will start with the %SYSTEM.License interface. Whereas some of the methods in this class can be
called using $SYSTEM.License, others must be called via ##class(%SYSTEM.License). For the sake of
consistency, we will use ##class(%SYSTEM.License) since it can be used for all methods. We will need
to be able to check the number of licenses available and those used by a specific user for our use case.

First, we will check the number of available license units. If at least one license is available, we do not
need to check anything else because we already have enough room for our reservation. We should also
review if the user who is trying to log in is the one for whom we are holding the reservation. It can be
achieved by a simple call to the LUAvailable method as follows:

if (##class(%SYSTEM.License).LUAvailable()) || ($USERNAME = username) > 0{

 return $$$OK

}

Next, we should check if our reserved user is currently logged in. If they already have a table at our
restaurant, we do not need to bother checking if there is an available spot for them. If the user always
connects from a specific address, we can use the LicenseCount method to verify that. It takes the user
identifier as an argument and returns an integer to tell us whether or not the user is consuming any
licenses right now. For example:

set licenseusage = ##class(%SYSTEM.License).LicenseCount("David@127.0.0.1")

It will tell us if this user is using a license. If it returns 0, the user is not using it, but if it returns 1, the user
does exploit the license. Be aware that if this method returns a number greater than 1, it means that the
user has exceeded their maximum number of connections and has begun consuming one license per

Page 1 of 4

https://community.intersystems.com/user/david-hockenbroch

Reserving a License
Published on InterSystems Developer Community (https://community.intersystems.com)

connection. In that case, you have a new problem to fix!

If we do not know from what address the connection will be coming, we need to approach this situation
differently and take a few extra steps. We should use the ConnectionList class query here. Consider the
following code:

ClassMethod CheckReservation(username As %String) As %Status

{

 try{

 if (##class(%SYSTEM.License).LUAvailable() > 1) || ($USERNAME = username) {

 return $$$OK

 }

 set rs = ##class(%ResultSet).%New("%SYSTEM.License:ConnectionList")

 set sc = rs.%Execute()

 if $$$ISERR(sc) {$$$ThrowStatus(sc)}

 while rs.%Next(){

 if $P(rs.%GetData(1),"@",1) = username{

 return $$$OK

 }

 }

 $$$ThrowStatus($$$ERROR(5001,"Reserved User Not Logged In."))

 }

 catch ex{

 do ex.Log()

 return ex.AsStatus()

 }

}

Please note that this method allows us to reserve only one license based on a username. If your use
case requires securing more than one license, you will have to look through the results of the
ConnectionList query to count how many customers have already logged in and, perhaps, wandered
over to the bar for their first Scotch in the meantime. Then, you will have to ensure that the remaining
LUAvailable is sufficient to seat all of your upcoming reservations, not just those greater than one.

This method typically accesses the LicenseCount query from the %SYSTEM.License class using a
%ResultSet object. Although it is generally preferred to utilize %SQL.Statement, the
%PrepareClassQuery method always fails on this query. That is why we cannot employ it here. This
query returns a row for each connection, and then, we iterate through the result set. For each row, the
first column contains the license ID, which looks like the username and IP address separated by an @.
Since we are only looking for the username (not the combined username and IP address), we want to
compare the first part of that column with the supplied username, and if they match, we will return a
successful status. However, if we get through the entire result set without finding the username, we will
return an error.

If we wished to change this method to check for a role instead (say we want always to allow at least one
user with the %All role to log in to let a superuser gain access to the system at all times), we could
accomplish that by switching to the %SYS namespace and verifying each user’s roles as we iterate
through the loop. We could employ ##class(Security.Users).Get($P(rs.%GetData(1),”@”,1),.props) and
then review if our role was included in props(“Roles”) by using props(“Roles”) [“%All”. We do need to
remember to return to the original namespace eventually, so we end up being logged in to the correct
application namespace. It should look more like the following code:

Page 2 of 4

Reserving a License
Published on InterSystems Developer Community (https://community.intersystems.com)

ClassMethod CheckReservation(role As %String) As %Status

{

 try{

 set returnns = $NAMESPACE

 zn "%SYS"

 set sc = ##class(Security.Users).Get($USERNAME,.props)

 if (##class(%SYSTEM.License).LUAvailable() > 1) || (props("Roles") [role) {

 zn returnns

 return $$$OK

 }

 set rs = ##class(%ResultSet).%New("%SYSTEM.License:ConnectionList")

 set sc = rs.%Execute()

 if $$$ISERR(sc) {$$$ThrowStatus(sc)}

 while rs.%Next(){

 set sc = ##class(Security.Users).Get($P(rs.%GetData(1),"@",1),.props)

 if props("Roles") [role{

 zn returnns

 return $$$OK

 }

 }

 zn returnns

 $$$ThrowStatus($$$ERROR(5001,"Reserved User Not Logged In."))

 }

 catch ex{

 do ex.Log()

 return ex.AsStatus()

 }

}

There are some other practical class queries within the License API that you may want to use as well. If
you wish to verify a login to a specific application, ConnectionAppList would be more appropriate. If you
want to inspect the type of license: User, CSP, Mixed, or Grace - go for the UserList class query. If you
operate the ProcessList query, you can get even deeper into the details of the processes run by the
user. Just bear in mind that whenever you get carried away a bit too much, simply slow down the login
process.

Now that we have this chunk of code, we must figure out where to put it. However, to make it possible,
we need to learn some basics about the %CSP.SessionEvents class. This class contains several
methods that you can override to control what happens when CSP sessions start, end, or get a time-out,
or when a user logs in or out. Here, we are particularly interested in the OnStartSession() method that
runs before a license that was allocated for the session. We can run our method there, and when it
returns an error, all we have to do is to set %session.EndSession to 1. It will give the user the standard
out of licenses message and ban them from logging in.

We will create a class called User.SessionEvents with the extension %CSP.SessionEvents and our
previously defined class method. Then we will override only one method in it to make sure that we keep
our space available for other reservations. That method will look like the following example:

ClassMethod OnStartSession()

{

 if $$$ISERR(##class(User.SessionEvents).CheckReservation("David")){

 set %session.EndSession=1

 }

Page 3 of 4

Reserving a License
Published on InterSystems Developer Community (https://community.intersystems.com)

 Quit $$$OK

}

If you have multiple namespaces, remember to create this class in all of them with a CSP application
that will use it.

The final step will be configuring our application to enable it to use these session events. We can do it in
the management portal by going to System Administration, Security, Applications, and Web Applications.
We should click applications in which we wish to use the custom session events class. Then, in the
Event Class box, we must enter User.SessionEvents. From that point on, every time we log in, our
customized OnStartSession method will be called, and other users will not be able to log in if there is no
room for our reservation.

There is one critical implementation detail to consider here. Do we want these session events to apply to
the System Management Portal or not? If we do, we might put ourselves into a situation where
something goes wrong, but we will not be able to log in and fix it. If we do not, there is a chance that
someone logging in will take up the license unit we were trying to reserve for ourselves. Perhaps we
should edit the code and see if the user has a certain role that allows them to bypass the reservation
check. However, this part is up to you.

From now on, every time your regular arrives, you can guarantee they will have a seat!

#Access control #Authentication #ObjectScript #Security #System Administration #Tips & Tricks #InterSystems
IRIS

 Source URL:https://community.intersystems.com/post/reserving-license

Page 4 of 4

https://community.intersystems.com/tags/access-control
https://community.intersystems.com/tags/authentication
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/system-administration
https://community.intersystems.com/tags/tips-tricks
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/reserving-license

