
SMART on FHIR JS Library and examples in iris-on-fhir
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 José Pereira · Jun 5, 2021 6m read
 Open Exchange

SMART on FHIR JS Library and examples in iris-on-fhir

Introduction
In the first article, a simple tutorial helped you to set up your FHIRaaS deployment.

Now, let's move forward and introduce a JS library to access the FHIR resource.

In the end, two examples of usage of this library will be presented, exploring the Appointment FHIR resource type.

SMART on FHIR JavaScript Library
FHIR is a REST API, so you can use any HTTP client in order to use it. But, it’s always a good idea to have help.

Furthermore, there is a cool initiative called SMART which aims to provide standards for easy access to health data
stored over health systems. This API relies on FHIR as its communication layer. This is called SMART on FHIR
applications.

The SMART team has been developing an JS client library, which helps us to create applications compatible with
SMART standards. For instance, in order to initiate the authorization code OAuth2 flow, you just need this code.

FHIR.oauth2.authorize({
"client_id": "<your-app-client-id>",
"clientSecret": "<your-app-client-secret>",
"scope": "openid profile user/*.*",
"redirect_uri": "http://localhost:64755/iris-on-fhir/index.html",
"iss": "https://fhirauth.lrwvcusn.static-test-account.isccloud.io/oauth2"
});

Note: this code is provided to you copy and paste in OAuth 2.0 tab:

Page 1 of 5

https://community.intersystems.com/user/jos%C3%A9-pereira
https://openexchange.intersystems.com/package/iris-on-fhir
https://openexchange.intersystems.com/package/iris-on-fhir
https://smarthealthit.org/

SMART on FHIR JS Library and examples in iris-on-fhir
Published on InterSystems Developer Community (https://community.intersystems.com)

In order to follow the SMART standard, you need to put this code in a page called launch.html. So, a SMART
launcher will be able to find your application launcher.

Note that the method authorize() do a lot of work to us:

Initializes the OAuth flow, taking the user to the IdP login page
If login was successful, stores the authorization token
Calls the refresh token URI, when token expires
Once a token is retrieved, this methods uses it until its expiration, but you can be unaware of all these steps

Another cool feature of this library is that you just need to provide the FHIR resource, and it automatically selects
API paths. For instance, in order to get patients, you just need to use the method request and specify the Patient
resource type:

FHIR.oauth2.ready()
 .then(client => client.request("Patient/1223"))
 .then(resource => console.log(resource))
 .catch(console.error);

This command retrieves a resource of Patient type. So if you modifies this resource, you can edit it or even create
another one based on this patient, by methods update and edit, respectively:

// saves changes in patient resource
FHIR.oauth2.ready()
 .then(client => client.update(resource))
 .then(() => console.log('patient updated'))
 .catch(console.error);

// creates a new patient resource
FHIR.oauth2.ready()
 .then(client => client.create(resource))
 .then(() => console.log('patient created'))
 .catch(console.error);

Page 2 of 5

SMART on FHIR JS Library and examples in iris-on-fhir
Published on InterSystems Developer Community (https://community.intersystems.com)

Note that you didn’t specify any FHIR API path.This because the library resolves the correct API path by the
resource’s type.

Finally, to delete a resource:

FHIR.oauth2.ready()
 .then(client => client.delete(`Patient/1223`))
 .then(() => console.log('patient deleted'))
 .catch(console.error);

FHIR Appointment resource
In order to show the use of another resource, let’s create a simple appointments application by handling the
Appointment FHIR resource.

Please, note that this is a very simple use case of this resource, using just a few of its properties. Furthermore, this
resource is related to other ones, which are not covered here. If you’d like to know more about these resources and
the workflow among them, you must refer to the HL7 FHIR specification.

First, a template object is grabbed from API Development for Appointment resource. This object is used to provide
a prototype for creation and editing of appointments.

function getAppointmentTemplate() {
 return {
 "resourceType": "Appointment",
 "id": "examplereq",
...
 };
}

Then, a function to change the prototype is created. This function receives the Appointment resource prototype and
an instance of a calendar event. This event object contains properties filled by the user through a calendar
component, which will be input to the resource prototype.

function setEventDataToResoruce(resource, eventData) {
 if (eventData.id) {
 resource.id = eventData.id;
 }

 const patient = getSelectedPatientObject();
 resource.participant[0].actor.reference = `Patient/${patient.id}`;
 resource.participant[0].actor.display = patient.name[0].given[0];
 resource.description = eventData.title;
 resource.comment = eventData.extendedProps.description;
 if (!resource.comment) {
 delete resource.comment;
 }

 if (eventData.allDay) {
 eventData.start = eventData.start.split(" ")[0];
 eventData.end = eventData.end.split(" ")[0];

Page 3 of 5

https://www.hl7.org/fhir/appointment.html

SMART on FHIR JS Library and examples in iris-on-fhir
Published on InterSystems Developer Community (https://community.intersystems.com)

 }

 const hasTime = {
 start: eventData.start.indexOf(" ") > -1,
 end: eventData.end.indexOf(" ") > -1
 }
 if (hasTime.start || hasTime.end) {
 resource.requestedPeriod[0].start = new Date(eventData.start).toISOString();
 resource.requestedPeriod[0].end = new Date(eventData.end).toISOString();
 } else {
 resource.requestedPeriod[0].start = eventData.start;
 resource.requestedPeriod[0].end = eventData.end;
 }

 return resource;
}

By these two functions, we can create and fill properly an Appointment resource. Now, we must use SMART library
to do the CRUD operations over this resource, finalizing our simple appointment application:

function getAppointments(client) {
 return client.request(`Appointment`);
}

function createAppointment(eventData) {
 const resource = setEventDataToResoruce(
 getAppointmentTemplate(), eventData
);
 return getFHIRClient()
 .then(client => {
 return client.create(resource);
 });
}

function updateAppointment(eventData) {
 const resource = setEventDataToResoruce(
 getAppointmentTemplate(), eventData
);
 return getFHIRClient()
 .then(client => {
 return client.update(resource);
 });
}

function deleteAppointment(id) {
 return getFHIRClient()
 .then(client => {
 return client.delete(`Appointment/${id}`);
 });
}

Here is a screencast of the application running:

Remember, the code exposed here is just the highlights to understand the application. But, if you'd like more
details, please, check out the source code.

Page 4 of 5

SMART on FHIR JS Library and examples in iris-on-fhir
Published on InterSystems Developer Community (https://community.intersystems.com)

Telegram bot
As a last demonstration of what cool things you can do with FHIRaaS, I’d like to show a very simple Telegram bot.

I based this feature fully in works of Nikolay Soloviev and Sergey Mikhailenko. In the Nikolay's article you can
checkout how to create the bot in Telegram. Also check out Sergey Mikhailenko application in order to get more
information on Telegram bots.

As the hard work was already done by Nikolay and Serguey, I just added an extra layer of code. This layer grabs
the patient’s identifier and the appointment date and time, from Telegram users in a simple chat interaction with no
NLP features. After grabbing such information, a FHIRaaS endpoint is called to post a new appointment.

Here a screencast of the bot in action:

If you'd like more detail on implementation, please check out the application code.

Conclusion
In this article we did an overview of the SMART on FHIR JavaScript Library library and show how to use it on two
examples based in the Appointment FHIR resource type.

Next article, we'll going more deep in the other features of iris-on-fhir application.

#InterSystems IRIS for Health #Open Exchange
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/smart-fhir-js-library-and-examples-iris-fhir

Page 5 of 5

https://community.intersystems.com/post/sending-alerts-ensemble-telegram
https://openexchange.intersystems.com/package/appmsw-telestat
https://community.intersystems.com/tags/intersystems-iris-health
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/iris-on-fhir
https://community.intersystems.com/post/smart-fhir-js-library-and-examples-iris-fhir

