Access to IRIS from Rust

Published on InterSystems Developer Community (https://community.intersystems.com)

Avrticle
Dmitry Maslennikov - mar3, 2021 4 read

Open Exchange

Access to IRIS from Rust

What do you think If | will say you, that very soon you will be able to connect to IRIS from the application written in

Rust.

What is Rust

Rust is a multi-paradigm programming language designed for performance and safety, especially safe concurrency.
Rust is syntactically similar to C++, but can guarantee memory safety by using a borrow checker to validate
references. Rust achieves memory safety without garbage collection, and reference counting is optional. (c)

Wikipedia

Most loved language for the last five years by the time of StackOverflow survey 2020.

Most Loved, Dreaded, and Wanted Languages

For five years running, Rust has taken the top spot as the most
loved programming language. TypeScript is second
surpassing Python compared to last year. We also see big
gains in Go, moving up to 5th from 10th last year.

VBA, Objective C, and Perl hold the top spots for the most
dreaded languages—languages that had a high percentage of
developers who are currently using them, but have no interest
in continuing to do so.

Dreaded Wanted

Rust
TypeScript
Python
Kotlin

Go

Julia

Dart

C#

What is possible right now.

If we look at technologies that developers report that they do
not use but want to learn, Python takes the top spot for the
fourth year in a row. We also see some modest gains in the
interest in learning Rust.

Page 1 of 4

https://community.intersystems.com/user/dmitry-maslennikov-5
https://openexchange.intersystems.com/package/vscode-intersystems-iris
https://openexchange.intersystems.com/package/vscode-intersystems-iris
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved

Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

It can already work with globals and do simple SQL queries. Look at the working example.

use irisnative
use irisnative::{connection::*, global, global::Sub, dobal};

fn min() {

|l et host = "127.0.0.1";
| et port = 1972;
| et nanespace = "USER';

| et usernane = "_ SYSTEM';
| et password = "SYS';
match irisnative::connect(host, port, nanmespace, username, password) {
k(rmut connection) => {
println!("Connection established");

printlnl("Server: {}", connection.server_version());

connection. kill (&global!(A));
connection. set (&gl obal ! (A(1)), "1");
connection. set (&gl obal ! (A(1, 2)), "test");
connection. set (&gl obal ! (A(1, "2", 3)), "123");
connection. set (&gl obal ! (A(2, 1)), "2ltest");
connection. set (&gl obal ! (A(3, 1)), "test31");

et mut global = global!(A(""));
while | et Some(key) = connection. next(&mut global) {
printinl ("*"A({:?}) = {:?}", key, {
i f connection.is_defined(&global).0 {
| et value: String = connection. get (&gl obal).unwap();
val ue
} else {
String:: fron("<UNDEFI NED>")
}
1)
et mut globall = global!(A(key, ""));
while I et Sonme(keyl) = connection. next (&t global 1) {
| et value: String;
i f connection.is_defined(&globall).0 {
val ue = connection. get (&gl obal 1) . unwrap();

} else {
val ue = String::from " <UNDEFI NED>") ;
}
printlnl (""A({:?}, {:?}) ={:?}", key, keyl, value);

}
}

et mut rs = connection.query(String::fron
"SELECT Name from %bi ctionary. C assDefiniti on WHERE Super = 'Ens. Producti on'
and Abstract<>1"));
while rs.next() {
let name: String = rs.get(0).unwap();
printinl("{}", nane);
}
}
Err(err) =>{
printin! ("Error: {}", err.nessage);
}
}

Page 2 of 4

Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

So, it will be possible to connect to IRIS over the network, as soon as it has access to the super server port (1972).

Real case usage

To use it in production, it has to be compiled into an executable file or library. And | have a project where | use it
now. It is the VSCode extension for advanced control of InterSystems IRIS. The project is participating in
InterSystems Grand Prix Contest, please vote there. Rust helps to get direct access to IRIS, and it will be possible
to check the status or stop/start Production, observe globals, and many other things in the future.

[Extension Development Host] - settings.json — temp

OBJECTSCRIPT {} settings.json X

v EXPLORER wvscode > {} settings.json > ...
v [temp (localhost:52773[USER]) Hl
%3 Classes
= Routines

5 "objectscript.conn": {
"active": 0

2 "host": "localhost",

> @ Includes "port": 52773,

> [O CSP Files “ns": "USER",

> A,_(‘) Other "username": "_SYSTEM",

"password": "SYS"
b
"objectscript.conn.superPort":

v INTEROPERABILITY
v Production
> P Test.NewProduction
v [dc.Demo.Production
v Services
dc.Demo.RedditService
Vv Processes
FilterPosts
v Operations
dc.Demo.EmailOperation
dc.Demo.FileOperation

v SYSTEM EXPLORER

v Globals
"~%ZPM.Client.ServerDefD
~%ZPM.Client.ServerDefl
~%ZPM.Packa360D.SystemRequi5D02D
~%ZPM.PackageManager360D.ModuleC
~A
~Abbb
~Bl.Study.AllergenD
ABI.Study.AllergySeverityD
~BI.Study.CityD
~BI.Study.CityRainfallD
~BI.Study.DiagnosisD

ARI Ctudyv: DNactarn

X fPmaster*+ ®» ®OAO0 [Connect ¢§ Dmitry&? 4> LiveShare localhost:52773[USER]

Rust has to be compiled to a binary format for the desired platform, and at the moment this extension is built for
macOS x64 and Windows x64. But Rust can be compiled for a very wide range of platforms, including Arm64.

Let's see what else can be done

Let's try to run the Rust application (from the example above) with IRIS connector in the Docker. Simple Dockerfile

Page 3 of 4

https://openexchange.intersystems.com/contest/current

Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

to build an image with the application.

FROM eki dd/ r ust - nusl - bui | der

ADD --chown=rust:rust . ./

RUN cargo build --rel ease --exanple nain

FROM scrat ch

COPY --frome0 /hone/rust/src/target/x86_64-unknown- | i nux-nusl/rel ease/ exanpl es/ main /
CMD ["/main"]

Let's build it

$ docker build -t rust-irisnative .

And run it

$ docker run -it rust-irisnative
Connection established

Server: RIS for UNIX (Ubuntu Server LTS for x86-64 Containers) 2020.4 (Build 524U) T
hu Cct 22 2020 13: 04: 25 EDT
AA(CMLT) = "1

AA(CMAT, "2") = "test"

AA("2") = " <UNDEFI NED>"

AA(M2", "1") = "21test”

AA("3") = " <UNDEFI NED>"

AA(M3", "1") = "test 31"

Test . NewPr oducti on

dc. Deno. Producti on

Wonder, how big is that image?

$ docker inmges rust-irisnative
REPCSI TORY TAG | MAGE I D CREATED S| ZE
rust-irisnative | at est Oble54e7aabf 2 mnutes ago 3.92MB

Just a few megabytes of the image can connect to IRIS, running somewhere else. Looks like it is very good for

microservices and serverless applications. And as a bonus for |0oT, Rust applications can run on tiny pc, for
instance, RaspberyPi Pico.

What do you think about it and how would you use Rust?

#CaretDev #Deployment #Languages #VSCode #InterSystems IRIS #InterSystems IRIS for Health
Check the related application on InterSystems Open Exchange

Source URL:https://community.intersystems.com/post/access-iris-rust

Page 4 of 4

https://community.intersystems.com/tags/caretdev
https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/languages
https://community.intersystems.com/tags/vscode
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health
https://openexchange.intersystems.com/package/vscode-intersystems-iris
https://community.intersystems.com/post/access-iris-rust

