
Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Dmitry Maslennikov · Mar 3, 2021 4m read
 Open Exchange

Access to IRIS from Rust
What do you think If I will say you, that very soon you will be able to connect to IRIS from the application written in
Rust.

What is Rust
Rust is a multi-paradigm programming language designed for performance and safety, especially safe concurrency.
Rust is syntactically similar to C++, but can guarantee memory safety by using a borrow checker to validate
references. Rust achieves memory safety without garbage collection, and reference counting is optional. (c)
Wikipedia

Most loved language for the last five years by the time of StackOverflow survey 2020.

What is possible right now.

Page 1 of 4

https://community.intersystems.com/user/dmitry-maslennikov-5
https://openexchange.intersystems.com/package/vscode-intersystems-iris
https://openexchange.intersystems.com/package/vscode-intersystems-iris
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved

Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

It can already work with globals and do simple SQL queries. Look at the working example.

use irisnative;
use irisnative::{connection::*, global, global::Sub, Global};

fn main() {
 let host = "127.0.0.1";
 let port = 1972;
 let namespace = "USER";
 let username = "_SYSTEM";
 let password = "SYS";
 match irisnative::connect(host, port, namespace, username, password) {
 Ok(mut connection) => {
 println!("Connection established");

 println!("Server: {}", connection.server_version());

 connection.kill(&global!(A));
 connection.set(&global!(A(1)), "1");
 connection.set(&global!(A(1, 2)), "test");
 connection.set(&global!(A(1, "2", 3)), "123");
 connection.set(&global!(A(2, 1)), "21test");
 connection.set(&global!(A(3, 1)), "test31");

 let mut global = global!(A(""));
 while let Some(key) = connection.next(&mut global) {
 println!("^A({:?}) = {:?}", key, {
 if connection.is_defined(&global).0 {
 let value: String = connection.get(&global).unwrap();
 value
 } else {
 String::from("<UNDEFINED>")
 }
 });
 let mut global1 = global!(A(key, ""));
 while let Some(key1) = connection.next(&mut global1) {
 let value: String;
 if connection.is_defined(&global1).0 {
 value = connection.get(&global1).unwrap();
 } else {
 value = String::from("<UNDEFINED>");
 }
 println!("^A({:?}, {:?}) = {:?}", key, key1, value);
 }
 }

 let mut rs = connection.query(String::from(
 "SELECT Name from %Dictionary.ClassDefinition WHERE Super = 'Ens.Production'
and Abstract<>1"));
 while rs.next() {
 let name: String = rs.get(0).unwrap();
 println!("{}", name);
 }
 }
 Err(err) => {
 println!("Error: {}", err.message);
 }
 }

Page 2 of 4

Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

}

So, it will be possible to connect to IRIS over the network, as soon as it has access to the super server port (1972).

Real case usage

To use it in production, it has to be compiled into an executable file or library. And I have a project where I use it
now. It is the VSCode extension for advanced control of InterSystems IRIS. The project is participating in
InterSystems Grand Prix Contest, please vote there. Rust helps to get direct access to IRIS, and it will be possible
to check the status or stop/start Production, observe globals, and many other things in the future.

Rust has to be compiled to a binary format for the desired platform, and at the moment this extension is built for
macOS x64 and Windows x64. But Rust can be compiled for a very wide range of platforms, including Arm64.

Let's see what else can be done

Let's try to run the Rust application (from the example above) with IRIS connector in the Docker. Simple Dockerfile

Page 3 of 4

https://openexchange.intersystems.com/contest/current

Access to IRIS from Rust
Published on InterSystems Developer Community (https://community.intersystems.com)

to build an image with the application.

FROM ekidd/rust-musl-builder

ADD --chown=rust:rust . ./

RUN cargo build --release --example main

FROM scratch

COPY --from=0 /home/rust/src/target/x86_64-unknown-linux-musl/release/examples/main /

CMD ["/main"]

Let's build it

$ docker build -t rust-irisnative .

And run it

$ docker run -it rust-irisnative
Connection established
Server: IRIS for UNIX (Ubuntu Server LTS for x86-64 Containers) 2020.4 (Build 524U) T
hu Oct 22 2020 13:04:25 EDT
^A("1") = "1"
^A("1", "2") = "test"
^A("2") = "<UNDEFINED>"
^A("2", "1") = "21test"
^A("3") = "<UNDEFINED>"
^A("3", "1") = "test31"
Test.NewProduction
dc.Demo.Production

Wonder, how big is that image?

$ docker images rust-irisnative
REPOSITORY TAG IMAGE ID CREATED SIZE
rust-irisnative latest 0b1e54e7aa6f 2 minutes ago 3.92MB

Just a few megabytes of the image can connect to IRIS, running somewhere else. Looks like it is very good for
microservices and serverless applications. And as a bonus for IoT, Rust applications can run on tiny pc, for
instance, RaspberyPi Pico.

What do you think about it and how would you use Rust?

#CaretDev #Deployment #Languages #VSCode #InterSystems IRIS #InterSystems IRIS for Health
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/access-iris-rust

Page 4 of 4

https://community.intersystems.com/tags/caretdev
https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/languages
https://community.intersystems.com/tags/vscode
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health
https://openexchange.intersystems.com/package/vscode-intersystems-iris
https://community.intersystems.com/post/access-iris-rust

