
Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Anton Umnikov · Jan 21, 2021 26m read
 Open Exchange

Highly available IRIS deployment on Kubernetes without mirroring
In this article, we’ll build a highly available IRIS configuration using Kubernetes Deployments with distributed
persistent storage instead of the “traditional” IRIS mirror pair. This deployment would be able to tolerate
infrastructure-related failures, such as node, storage and Availability Zone failures. The described approach greatly
reduces the complexity of the deployment at the expense of slightly extended RTO.

Figure 1 - Traditional Mirroring vs Kubernetes with Distributed Storage

All the source code for this article is available
at https://github.com/antonum/ha-iris-k8s
TL;DR
Assuming you have a running 3 node cluster and have some familiarity with Kubernetes ‒ go right ahead:

kubectl apply -f https://raw.githubusercontent.com/longhorn/longhorn/master/deploy/lo
nghorn.yaml
kubectl apply -f https://github.com/antonum/ha-iris-k8s/raw/main/tldr.yaml

If you are not sure what the two lines above are about or don’t have the system to execute these on ‒ skip to the
“High Availability Requirements” section. We’ll explain things in the details as we go.

The first line installs Longhorn - open-source distributed Kubernetes storage. The second one installs InterSystems
IRIS deployment, using Longhorn-based volume for Durable SYS.

Wait for all the pods to come up to the running state. kubectl get pods -A

You now should be able to access the IRIS management portal at http://<IRIS Service Public
IP>:52773/csp/sys/%25CSP.Portal.Home.zen (default password is 'SYS') and IRIS command line via:

kubectl exec -it iris-podName-xxxx -- iris session iris

Simulate the Failure

Now start messing around. But before you do it, try to add some data into the database and make sure it's there
when IRIS is back online.

kubectl exec -it iris-6d8896d584-8lzn5 -- iris session iris
USER>set ^k8stest($i(^k8stest))=$zdt($h)_" running on "_$system.INetInfo.LocalHostNam

Page 1 of 13

https://community.intersystems.com/user/anton-umnikov
https://openexchange.intersystems.com/package/ha-iris-k8s
https://openexchange.intersystems.com/package/ha-iris-k8s
https://github.com/antonum/ha-iris-k8s

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

e()
USER>zw ^k8stest
^k8stest=1
^k8stest(1)="01/14/2021 14:13:19 running on iris-6d8896d584-8lzn5"

Our "chaos engineering" starts here:

Stop IRIS - Container will be restarted automatically
kubectl exec -it iris-6d8896d584-8lzn5 -- iris stop iris quietly

Delete the pod - Pod will be recreated
kubectl delete pod iris-6d8896d584-8lzn5

"Force drain" the node, serving the iris pod - Pod would be recreated on another no
de
kubectl drain aks-agentpool-29845772-vmss000001 --delete-local-data --ignore-
daemonsets --force

Delete the node - Pod would be recreated on another node
well... you can't really do it with kubectl. Find that instance or VM and KILL it.
if you have access to the machine - turn off the power or disconnect the network ca
ble. Seriously!

High Availability Requirements

We are building a system that can tolerate a failure of the following:

IRIS instance within container/VM. IRIS ‒ level failure.
Pod/Container failure.
Temporary unavailability of the individual cluster node. A good example would be the Availability Zone
temporary goes off-line.
Permanent failure of individual cluster node or disk.

Basically, the scenarios we just tried in the “Simulate the failure” section.

If any of these failures occur, the system should get online without any human involvement and without data loss.
Technically there are limits on what data persistence guarantees. IRIS itself can provide based on the Journal
Cycle and transaction usage within an application:
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=GCDI_journal#GCDI_journal_writ
ecycle In any case, we are talking under two seconds for RPO (Recovery Point Objective).

Other components of the system (Kubernetes API Service, etcd database, LoadBalancer service, DNS and others)
are outside of the scope and typically managed by the Managed Kubernetes Service such as Azure AKS or AWS
EKS so we assume that they are highly available already.

Another way of looking at it ‒ we are responsible for handling individual compute and storage component failures
and assuming that the rest is taken care of by the infrastructure/cloud provider.

Architecture
When it comes to high availability for InterSystems IRIS, the traditional recommendation is to use mirroring. With
mirroring you have two always-on IRIS instances synchronously replicating data. Each node maintains a full copy
of the database and if the Primary node goes down, users reconnect to the Backup node. Essentially, with the

Page 2 of 13

https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=GCDI_journal#GCDI_journal_writecycle
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=GCDI_journal#GCDI_journal_writecycle

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

mirroring approach, IRIS is responsible for the redundancy of both compute and storage.

With mirrors deployed in different availability zones, mirroring provides required redundancy for both compute and
storage failure and allows for the excellent RTO (Recovery Time Objective or the time it takes for a system to get
back online after a failure) of just a few seconds. You can find the deployment template for Mirrored IRIS on AWS
Cloud here: https://community.intersystems.com/post/intersystems-iris-deployment%C2%A0guide-
aws%C2%A0using-cloudformation-template

The less pretty side of mirroring is the complexity of setting it up, performing backup/restore procedures and the
lack of replication for security settings and local non-database files.

Container orchestrators such as Kubernetes (wait, it’s 2021… are there any other left?!) provide compute
redundancy via Deployment objects, automatically restarting the failed IRIS Pod/Container in case of failure. That’s
why you see only one IRIS node running on the Kubernetes architecture diagram. Instead of keeping a second
IRIS node always running we outsource the compute availability to Kubernetes. Kubernetes will make sure that the
IRIS pod be recreated in case the original pod fails for whatever reason.

Figure 2 Failover Scenario

So far so good… If IRIS node fails, Kubernetes just creates a new one. Depending on your cluster it takes
anywhere between 10 and 90 seconds to get IRIS back online after the compute failure. It is a step down
compared with just a couple of seconds for mirroring, but if it’s something you can tolerate in the unlikely event of
the outage, the reward is the greatly reduced complexity. No mirroring to configure. No security setting and file
replication to worry about.

Frankly, if you login inside the container, running IRIS in Kubernetes, you’ll not even notice that you are running
inside the highly available environment. Everything looks and feels just like a single instance IRIS deployment.

Wait, what about storage? We are dealing with a database nevertheless … Whatever failover scenario we can
imagine, our system should take care of the data persistence too. Mirroring relies on the compute, local to the IRIS
node. If the node dies or just becomes temporarily unavailable ‒ so does the storage for that node. That’s why in
mirroring configuration IRIS takes care of replicating databases on the IRIS level.

We need storage that can not only preserve the state of the database upon container restart but also can provide
redundancy for the event like node or entire segment of the network (Availability Zone) going down. Just a few
years ago there was no easy answer to this. As you can guess from the diagram above ‒ we have such an answer
now. It is called distributed container storage.

Distributed storage abstracts underlying host volumes and presents them as one joint storage available to every
node of the k8s cluster. We use Longhorn https://longhorn.io in this article; it’s free, open-source and fairly easy to
install. But you can also take a look at others, such as OpenEBS, Portworx and StorageOS that would provide the
same functionality. Rook Ceph is another CNCF Incubating project to consider. On the high end of the spectrum ‒
there are enterprise-grade storage solutions such as NetApp, PureStorage and others.

Step by step guide
In TL;DR section we just installed the whole thing in one shot. Appendix B would guide you through step- by step
installation and validation procedures.

Page 3 of 13

https://community.intersystems.com/post/intersystems-iris-deployment%C2%A0guide-aws%C2%A0using-cloudformation-template
https://community.intersystems.com/post/intersystems-iris-deployment%C2%A0guide-aws%C2%A0using-cloudformation-template
https://longhorn.io

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

Kubernetes Storage
Let’s step back for a second and talk about containers and storage in general and how IRIS fits into the picture.

By default all data inside the container is ephemeral. When the container dies, data disappears. In Docker, you can
use the concept of volumes. Essentially it allows you to expose the directory on the host OS to the container.

docker run --detach
 --publish 52773:52773
 --volume /data/dur:/dur
 --env ISC_DATA_DIRECTORY=/dur/iconfig
 --name iris21 --init intersystems/iris:2020.3.0.221.0

In the example above we are starting the IRIS container and making the host-local ‘/data/dur’ directory accessible
to the container at the ‘/dur’ mount point. So, if the container is storing anything inside this directory, it would be
preserved and available to use on the next container start.

On the IRIS side of things, we can instruct IRIS to store all the data that needs to survive container restart in the
specific directory by specifying ISC_DATA_DIRECTORY. Durable SYS is the name of the IRIS feature you might
need to look for in the documentation
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=ADOCK#ADOCK_iris_durable_ru
nning

In Kubernetes the syntax is different, but the concepts are the same.

Here is the basic Kubernetes Deployment for IRIS.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: iris
spec:
 selector:
 matchLabels:
 app: iris
 strategy:
 type: Recreate
 replicas: 1
 template:
 metadata:
 labels:
 app: iris
 spec:
 containers:
 - image: store/intersystems/iris-community:2020.4.0.524.0
 name: iris
 env:
 - name: ISC_DATA_DIRECTORY
 value: /external/iris
 ports:
 - containerPort: 52773
 name: smp-http
 volumeMounts:
 - name: iris-external-sys
 mountPath: /external
 volumes:

Page 4 of 13

https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=ADOCK#ADOCK_iris_durable_running
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=ADOCK#ADOCK_iris_durable_running

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

 - name: iris-external-sys
 persistentVolumeClaim:
 claimName: iris-pvc

In the deployment specification above, ‘volumes’ part lists storage volumes. They can be available outside of the
container, via persistentVolumeClaim such as ‘iris-pvc’. volumeMounts expose this volume inside the container. ‘iris-
external-sys’ is the identifier that ties volume mount to the specific volume. In reality, we might have multiple
volumes and this name is used just to distinguish one from another. You can call it ‘steve’ if you want.

Already familiar environment variable ISC_DATA_DIRECTORY directs IRIS to use a specific mount point to store
all the data that needs to survive container restart.

Now let’s take a look at the Persistent Volume Claim iris-pvc.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: iris-pvc
spec:
 storageClassName: longhorn
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Fairly straightforward. Requesting 10 gigabytes, mountable as Read/Write on one node only, using storage class of
‘longhorn’.

That storageClassName: longhorn is actually critical here.

Let’s look at what storage classes are available on my AKS cluster:

kubectl get StorageClass
NAME PROVISIONER RECLAIMPOLICY VOLU
MEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
azurefile kubernetes.io/azure-
file Delete Immediate true 10d
azurefile-premium kubernetes.io/azure-
file Delete Immediate true 10d
default (default) kubernetes.io/azure-
disk Delete Immediate true 10d
longhorn driver.longhorn.io Delete Imme
diate true 10d
managed-premium kubernetes.io/azure-
disk Delete Immediate true 10d

There are few storage classes from Azure, installed by default and one from Longhorn that we installed as part of
the very first command:

kubectl apply -f https://raw.githubusercontent.com/longhorn/longhorn/master/deploy/lo
nghorn.yaml

Page 5 of 13

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

If you comment out #storageClassName: longhorn in the Persistent Volume Claim definition, it will use storage
class, currently marked as “default” which is a regular Azure Disk.

To illustrate why we need Distributed storage let’s repeat the “chaos engineering” experiments we described at the
beginning of the article without longhorn storage. The first two scenarios (stop IRIS and delete the Pod) would
successfully complete and systems would recover to the operational state. Attempting to either drain or kill the
node would bring the system into a failed state.

#forcefully drain the node
kubectl drain aks-agentpool-71521505-vmss000001 --delete-local-data --ignore-
daemonsets

kubectl describe pods
...
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 57s (x9 over 2m41s) default-scheduler 0/3 nodes are av
ailable: 1 node(s) were unschedulable, 2 node(s) had volume node affinity conflict.

Essentially, Kubernetes would try to restart the IRIS pod on the cluster, but the node where it was originally started
is not available and the other two nodes have “volume node affinity conflict”. With this storage type, the volume is
available only on the node it was originally created since it is basically tied to the disk available on the node host.

With longhorn as a storage class, both “force drain” and “node kill” experiments succeed, and the IRIS pod is back
into operation shortly. To achieve it Longhorn takes control over the available storage on the 3 nodes of the cluster
and replicates the data across all three nodes. Longhorn promptly repairs cluster storage if one of the nodes
becomes permanently unavailable. In our “node kill” scenario, the IRIS pod is restarted on another node right away
using two remaining volume replicas. Then, AKS provisions a new node to replace the lost one and as soon as it is
ready, Longhorn kicks in and rebuilds required data on the new node. Everything is automatic, without your
involvement.

Figure 3 Longhorn rebuilding volume replica on the replaced node

More about k8s deployment
Let’s take a look at some other aspects of our deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: iris
spec:
 selector:
 matchLabels:
 app: iris
 strategy:
 type: Recreate
 replicas: 1
 template:
 metadata:
 labels:
 app: iris
 spec:
 containers:
 - image: store/intersystems/iris-community:2020.4.0.524.0

Page 6 of 13

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

 name: iris
 env:
 - name: ISC_DATA_DIRECTORY
 value: /external/iris
 - name: ISC_CPF_MERGE_FILE
 value: /external/merge/merge.cpf
 ports:
 - containerPort: 52773
 name: smp-http
 volumeMounts:
 - name: iris-external-sys
 mountPath: /external
 - name: cpf-merge
 mountPath: /external/merge
 livenessProbe:
 initialDelaySeconds: 25
 periodSeconds: 10
 exec:
 command:
 - /bin/sh
 - -c
 - "iris qlist iris | grep running"
 volumes:
 - name: iris-external-sys
 persistentVolumeClaim:
 claimName: iris-pvc
 - name: cpf-merge
 configMap:
 name: iris-cpf-merge

strategy: Recreate, replicas: 1 tells Kubernetes that at any given time it should maintain one and exactly one
instance of IRIS pod running. This is what takes care of our “delete pod” scenario.

livenessProbe section makes sure that IRIS is always up inside the container and handles “IRIS is down” scenario.
initialDelaySeconds allows for some grace period for IRIS to start. You might want to increase it if IRIS is taking a
considerable time to start your deployment.

CPF MERGE feature of IRIS allows you to modify the content of the configuration file iris.cpf upon container start.
See
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/DocBook.UI.Page.cls?KEY=RACS_cpf#RACS_cpf_e
dit_merge for relevant documentation. In this example I’m using Kubernetes Config Map to manage the content of
the merge file: https://github.com/antonum/ha-iris-k8s/blob/main/iris-cpf-merge.yaml Here we adjust global buffers
and gmheap values, used by IRIS instance, but everything you can find in iris.cpf file is a fair game. You can even
change the default IRIS password using `PasswordHash` field in the CPF Merge file. Read more at:
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=ADOCK#ADOCK_iris_images_pa
ssword_auth

Besides Persistent Volume Claim https://github.com/antonum/ha-iris-k8s/blob/main/iris-pvc.yaml deployment
https://github.com/antonum/ha-iris-k8s/blob/main/iris-deployment.yaml and ConfigMap with CPF Merge content
https://github.com/antonum/ha-iris-k8s/blob/main/iris-cpf-merge.yaml our deployment needs a service that exposes
IRIS deployment to the public internet: https://github.com/antonum/ha-iris-k8s/blob/main/iris-svc.yaml

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

Page 7 of 13

https://docs.intersystems.com/irisforhealthlatest/csp/docbook/DocBook.UI.Page.cls?KEY=RACS_cpf#RACS_cpf_edit_merge
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/DocBook.UI.Page.cls?KEY=RACS_cpf#RACS_cpf_edit_merge
https://github.com/antonum/ha-iris-k8s/blob/main/iris-cpf-merge.yaml
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=ADOCK#ADOCK_iris_images_password_auth
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/Doc.View.cls?KEY=ADOCK#ADOCK_iris_images_password_auth
https://github.com/antonum/ha-iris-k8s/blob/main/iris-pvc.yaml
https://github.com/antonum/ha-iris-k8s/blob/main/iris-deployment.yaml
https://github.com/antonum/ha-iris-k8s/blob/main/iris-cpf-merge.yaml
https://github.com/antonum/ha-iris-k8s/blob/main/iris-svc.yaml

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

iris-svc LoadBalancer 10.0.18.169 40.88.123.45 52773:31589/TCP 3d1h
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 10d

External IP of the iris-svc can be used to access the IRIS management portal
via http://40.88.123.45:52773/csp/sys/%25CSP.Portal.Home.zen. The default password is 'SYS'.

Backup/Restore and Storage Scaling
Longhorn provides web-based UI for configuring and managing volumes.

Identify the pod, running longhorn-ui component and establish port forwarding with kubectl:

kubectl -n longhorn-system get pods
note the longhorn-ui pod id.

kubectl port-forward longhorn-ui-df95bdf85-gpnjv 9000:8000 -n longhorn-system

Longhorn UI will become available at http://localhost:9000

Figure 4 Longhorn UI

Besides high availability, most of the Kubernetes container storage solutions provide convenient options for
backup, snapshots and restore. Details are implementation-specific, but the common convention is that backup is
associated with the VolumeSnapshot. It is so for Longhorn. Depending on your Kubernetes version and provider
you might also need to install volume snapshotter https://github.com/kubernetes-csi/external-snapshotter

`iris-volume-snapshot.yaml` is an example of such a volume snapshot. Before using it, you need to configure
backups to either the S3 bucket or NFS volume in Longhorn. https://longhorn.io/docs/1.0.1/snapshots-and-
backups/backup-and-restore/...

Take crash-consistent backup of the iris volume
kubectl apply -f iris-volume-snapshot.yaml

For IRIS it is recommended that you execute External Freeze before taking the backup/snapshot and Thaw after.
See details here:
https://docs.intersystems.com/irisforhealthlatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLA
SSNAME=Backup.General#ExternalFreeze

To increase the size of the IRIS volume - adjust storage request in persistent volume claim (file `iris-pvc.yaml`),
used by IRIS.

...
 resources:
 requests:
 storage: 10Gi #change this value to required

Then, re-apply the pvc specification. Longhorn cannot actually apply this change while the volume is connected to
the running Pod. Temporarily change replicas count to zero in the deployment so volume size can be increased.

High Availability ‒ Overview
At the beginning of the article, we set some criteria for High Availability. Here is how we achieve it with this
architecture:

Page 8 of 13

http://40.88.123.45:52773/csp/sys/%25CSP.Portal.Home.zen
http://localhost:9000
https://github.com/kubernetes-csi/external-snapshotter
https://longhorn.io/docs/1.0.1/snapshots-and-backups/backup-and-restore/set-backup-target/
https://longhorn.io/docs/1.0.1/snapshots-and-backups/backup-and-restore/set-backup-target/
https://docs.intersystems.com/irisforhealthlatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=Backup.General#ExternalFreeze
https://docs.intersystems.com/irisforhealthlatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=Backup.General#ExternalFreeze

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

Failure Domain Automatically mitigated by

IRIS instance within container/VM. IRIS ‒ level failure. Deployment Liveness probe restarts container in case IRIS is down

Pod/Container failure. Deployment recreates Pod

Temporary unavailability of the individual cluster node. A good
example would be Availability Zone going off-line.

Deployment recreates pod on another node. Longhorn makes data
available on another node.

Permanent failure of individual cluster node or disk. Same as above + k8s cluster autoscaler replaces a damaged node with
a new one. Longhorn rebuilds data on the new node.

Zombies and other things to consider
If you are familiar with running IRIS in the Docker containers, you might have used the `--init` flag.

docker run --rm -p 52773:52773 --init store/intersystems/iris-
community:2020.4.0.524.0

The goal of this flag is to prevent the formation of the "zombie processes". In Kubernetes, you can either use
‘shareProcessNamespace: true’ (security considerations apply) or in your own containers utilize `tini`. Example
Dockerfile with tini:

FROM iris-community:2020.4.0.524.0
...
Add Tini
USER root
ENV TINI_VERSION v0.19.0
ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini /tini
RUN chmod +x /tini
USER irisowner
ENTRYPOINT ["/tini", "--", "/iris-main"]

Starting 2021, all InterSystems provided container images would include tini by default.

You can further decrease the failover time for “force drain node/kill node” scenarios by adjusting few parameters:

Longhorn Pod Deletion Policy https://longhorn.io/docs/1.1.0/references/settings/#pod-deletion-policy-when-node-is-
down and kubernetes taint-based eviction: https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-
toleration/#taint-based-evictions

Disclaimer
As the InterSystems employee, I kinda have to put this in here: Longhorn is used in this article as an example of
distributed Kubernetes Block Storage. InterSystems does not validate or issue an official support statement for
individual storage solutions or products. You need to test and validate if any specific storage solution fits your
needs.

Distributed storage might also have substantially different performance characteristics, comparing to node-local
storage. Especially for write operations, where data must be written to multiple locations before it is considered to
be in the persisted state. Make sure to test your workloads and understand the specific behaviour and options your
CSI driver offers..

Page 9 of 13

https://longhorn.io/docs/1.1.0/references/settings/#pod-deletion-policy-when-node-is-down
https://longhorn.io/docs/1.1.0/references/settings/#pod-deletion-policy-when-node-is-down
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

Basically, InterSystems does not validate and/or endorse specific storage solutions like Longhorn in the same way
as we don’t validate individual HDD brands or server hardware manufacturers. I personally found Longhorn easy to
work with and their development team extremely responsive and helpful at the project’s GitHub
page. https://github.com/longhorn/longhorn

Conclusion
Kubernetes ecosystem evolved significantly in the past few years and with the use of distributed block storage
solutions, you now can build a Highly Available configuration that can sustain IRIS instance, cluster node and even
Availability Zone failure.

You can outsource compute and storage high availability to Kubernetes components, resulting in a significantly
simpler system to configure and maintain, comparing to the traditional IRIS mirroring. At the same time, this
configuration might not provide the same RTO and storage ‒ level performance as mirrored configuration.

In this article, we build a highly available IRIS configuration using Azure AKS as a managed Kubernetes and
Longhorn distributed storage system. You can explore multiple alternatives such as AWS EKS, Google Kubernetes
Engine for managed K8s, StorageOS, Portworx and OpenEBS as distributed container storage or even enterprise-
level storage solutions such as NetApp, PureStorage, Dell EMC and others.

Appendix A. Creating Kubernetes Cluster in the cloud
Managed Kubernetes service from one of the public cloud providers is an easy way to create k8s cluster required
for this setup. Azure’s AKS default configuration is ready out of the box to be used for the deployment described in
this article.

Create a new AKS cluster with 3 nodes. Leave everything else default.

Figure 5 Create AKS cluster

Install kubectl on your computer locally: https://kubernetes.io/docs/tasks/tools/install-kubectl/

Register your AKS cluster with local kubectl

Figure 6 Register AKS cluster with kubectl

After that, you can get right back to the beginning of the article and install longhorn and IRIS deployment.

Installation on AWS EKS is a little bit more complicated. You need to make sure every instance in your node group
has open-iscsi installed.

sudo yum install iscsi-initiator-utils -y

Installing Longhorn on GKE requires extra step, described here: https://longhorn.io/docs/1.0.1/advanced-
resources/os-distro-specific/csi-on-gke/

Appendix B. Step by step installation

Step 1 ‒ Kubernetes Cluster and kubectl

You need 3 nodes k8s cluster. Appendix A describes how to get one on Azure.

Page 10 of 13

https://github.com/longhorn/longhorn
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://longhorn.io/docs/1.0.1/advanced-resources/os-distro-specific/csi-on-gke/
https://longhorn.io/docs/1.0.1/advanced-resources/os-distro-specific/csi-on-gke/

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
aks-agentpool-29845772-vmss000000 Ready agent 10d v1.18.10
aks-agentpool-29845772-vmss000001 Ready agent 10d v1.18.10
aks-agentpool-29845772-vmss000002 Ready agent 10d v1.18.10

Step 2 ‒ Install Longhorn

kubectl apply -f https://raw.githubusercontent.com/longhorn/longhorn/master/deploy/lo
nghorn.yaml

Make sure all the pods in the ‘longhorn-system’ namespace are in the running state. It might take few minutes.

$ kubectl get pods -n longhorn-system
NAME READY STATUS RESTARTS AGE
csi-attacher-74db7cf6d9-jgdxq 1/1 Running 0 10d
csi-attacher-74db7cf6d9-l99fs 1/1 Running 1 11d
...
longhorn-manager-flljf 1/1 Running 2 11d
longhorn-manager-x76n2 1/1 Running 1 11d
longhorn-ui-df95bdf85-gpnjv 1/1 Running 0 11d

Refer to the Longhorn installation guide for details and troubleshooting
https://longhorn.io/docs/1.1.0/deploy/install/install-with-kubectl

Step 3 ‒ Clone the GitHub repo

$ git clone https://github.com/antonum/ha-iris-k8s.git
$ cd ha-iris-k8s
$ ls
LICENSE iris-deployment.yaml iris-volume-snapshot.yaml
README.md iris-pvc.yaml longhorn-aws-secret.yaml
iris-cpf-merge.yaml iris-svc.yaml tldr.yaml

Step 4 ‒ deploy and validate components one by one

tldr.yaml file contains all the components needed for the deployment in one bundle. Here we’ll install them one by
one and validate the setup of every one of them individually.

If you have previously applied tldr.yaml - delete it.
$ kubectl delete -f https://github.com/antonum/ha-iris-k8s/raw/main/tldr.yaml

Create Persistent Volume Claim
$ kubectl apply -f iris-pvc.yaml
persistentvolumeclaim/iris-pvc created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODE
S STORAGECLASS AGE
iris-pvc Bound pvc-
fbfaf5cf-7a75-4073-862e-09f8fd190e49 10Gi RWO longhorn 10s

Create Config Map
$ kubectl apply -f iris-cpf-merge.yaml

Page 11 of 13

https://longhorn.io/docs/1.1.0/deploy/install/install-with-kubectl

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

$ kubectl describe cm iris-cpf-merge
Name: iris-cpf-merge
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
merge.cpf:

[config]
globals=0,0,800,0,0,0
gmheap=256000
Events: <none>

create iris deployment
$ kubectl apply -f iris-deployment.yaml
deployment.apps/iris created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
iris-65dcfd9f97-v2rwn 0/1 ContainerCreating 0 11s

note the pod name. You’ll use it to connect to the pod in the next command

$ kubectl exec -it iris-65dcfd9f97-v2rwn -- bash

irisowner@iris-65dcfd9f97-v2rwn:~$ iris session iris
Node: iris-65dcfd9f97-v2rwn, Instance: IRIS

USER>w $zv
IRIS for UNIX (Ubuntu Server LTS for x86-64 Containers) 2020.4 (Build 524U) Thu Oct 2
2 2020 13:04:25 EDT
h<enter> to exit IRIS shell
exit<enter> to exit pod

access the logs of the IRIS container
$ kubectl logs iris-65dcfd9f97-v2rwn
...
[INFO] ...started InterSystems IRIS instance IRIS
01/18/21-23:09:11:312 (1173) 0 [Utility.Event] Private webserver started on 52773
01/18/21-23:09:11:312 (1173) 0 [Utility.Event] Processing Shadows section (this syste
m as shadow)
01/18/21-23:09:11:321 (1173) 0 [Utility.Event] Processing Monitor section
01/18/21-23:09:11:381 (1323) 0 [Utility.Event] Starting TASKMGR
01/18/21-23:09:11:392 (1324) 0 [Utility.Event] [SYSTEM MONITOR] System Monitor starte
d in %SYS
01/18/21-23:09:11:399 (1173) 0 [Utility.Event] Shard license: 0
01/18/21-23:09:11:778 (1162) 0 [Database.SparseDBExpansion] Expanding capacity of spa
rse database /external/iris/mgr/iristemp/ by 10 MB.

create iris service
$ kubectl apply -f iris-svc.yaml
service/iris-svc created

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
iris-svc LoadBalancer 10.0.214.236 20.62.241.89 52773:30128/TCP 15s

Page 12 of 13

Highly available IRIS deployment on Kubernetes without mirroring
Published on InterSystems Developer Community (https://community.intersystems.com)

Step 5 ‒ Access management portal

Finally ‒ connect to the management portal of the IRIS, using the external IP of the service:
http://20.62.241.89:52773/csp/sys/%25CSP.Portal.Home.zen username _SYSTEM, Password SYS. You’ll be
asked to change it on your first login.

#AWS #Azure #Backup #Best Practices #Failover #GCP #High Availability #Kubernetes #Mirroring #InterSystems
IRIS
Check the related application on InterSystems Open Exchange

 Source
URL:https://community.intersystems.com/post/highly-available-iris-deployment-kubernetes-without-mirroring

Page 13 of 13

http://20.62.241.89:52773/csp/sys/%25CSP.Portal.Home.zen
https://community.intersystems.com/tags/aws
https://community.intersystems.com/tags/azure
https://community.intersystems.com/tags/backup
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/failover
https://community.intersystems.com/tags/gcp
https://community.intersystems.com/tags/high-availability
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/mirroring
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/ha-iris-k8s
https://community.intersystems.com/post/highly-available-iris-deployment-kubernetes-without-mirroring

