
RealWorld Application with InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Dmitry Maslennikov · Oct 6, 2020 6m read
 Open Exchange

RealWorld Application with InterSystems IRIS
Let's imagine if you would like to write some real web application, for instance, some simple clone of medium.com.
Such sort of application can be written using any different language on the backend side, or with any framework on
the frontend side. So many ways to do the same application, and you can look at this project. Which offers a bunch
of frontends and backends realizations for exactly the same application. And you can easily mix them, any chosen
frontend should work with any backend.

Let me introduce the same application realization for InterSystems IRIS on a backend side.

The RealWorld project uses REST and offers already prepared swagger specification, and Postman/Newman
collection with tests. So, it helps to implement exactly the same REST API. And fortunately, InterSystems already
implemented the way to generate REST API implementation by swagger specification. How to do it is best
described here.

So my steps to implement this application were

Generate API from swagger specification
Add a few persistent classes, for every type of objects used in the application, and it's

Users
Articles
Comments

Implement API, test it with Postman
Finally, start with any frontend to see it in life.

Start with docker
You can try what came out of it.

// clone github repository
git clone https://github.com/daimor/realworld-intersystems-iris.git
cd realworld-intersystems-iris

// build and run it with docker-compose
docker-compose up -d --build

After start REST API in IRIS will be available by URL http://localhost:12000/conduit, and it can be tested with
newman, you will need npm and npx package installed

Page 1 of 6

https://community.intersystems.com/user/dmitry-maslennikov-5
https://openexchange.intersystems.com/package/realworld-intersystems-iris
https://openexchange.intersystems.com/package/realworld-intersystems-iris
https://github.com/gothinkster/realworld
https://openexchange.intersystems.com/package/realworld-intersystems-iris
https://github.com/gothinkster/realworld/blob/master/api/swagger.json
https://github.com/gothinkster/realworld/blob/master/api/Conduit.postman_collection.json
https://community.intersystems.com/post/developing-rest-api-spec-first-approach
http://localhost:12000/conduit
https://nodejs.org/en/download/
https://www.npmjs.com/package/npx

RealWorld Application with InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

APIURL=http://localhost:12000/conduit ./run-api-tests.sh

Same tests running Postman

Frontend is available by URL http://localhost/

Page 2 of 6

http://localhost/

RealWorld Application with InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

UnitTests is available to run with zpm, just enter to iris session

$ docker-compose exec server iris session iris

Node: 0790684cf488, Instance: IRIS

CONDUIT>zpm
zpm: CONDUIT>test realworld [realworld] Reload START
[realworld] Reload SUCCESS
[realworld] Module object refreshed.
[realworld] Validate START
[realworld] Validate SUCCESS
[realworld] Compile START
[realworld] Compile SUCCESS
[realworld] Activate START
[realworld] Configure START
[realworld] Configure SUCCESS
[realworld] Activate SUCCESS

Page 3 of 6

RealWorld Application with InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

[realworld] Test START
Use the following URL to view the result:
http://172.22.0.3:52773/csp/sys/%25UnitTest.Portal.Indices.cls?Index=48&$NAMESPACE=CO
NDUIT
All PASSED
[realworld] Test SUCCESS
zpm: CONDUIT>

By default, it goes with Vue frontend, but it's possible to run Angular and React

web=angular docker-compose up -d --build web

web=react docker-compose up -d --build web

web=vue docker-compose up -d --build web

Install with ZPM
InterSystems IRIS part (backend) can be installed with ZPM

USER>zpm
zpm: USER>install realworld [realworld] Reload START
[realworld] Reload SUCCESS
[realworld] Module object refreshed.
[realworld] Validate START
[realworld] Validate SUCCESS
[realworld] Compile START
[realworld] Compile SUCCESS
[realworld] Activate START
[realworld] Configure START
[realworld] Configure SUCCESS
[realworld] Activate SUCCESS
zpm: USER>

And it will create `/conduit` web application, so it should be able to be tested with newman as well, just set correct
port

APIURL=http://localhost:52773/conduit ./run-api-tests.sh

And UnitTests can be run with ZPM

zpm: USER>test realworld [realworld] Reload START
[realworld] Reload SUCCESS
[realworld] Module object refreshed.
[realworld] Validate START
[realworld] Validate SUCCESS
[realworld] Compile START
[realworld] Compile SUCCESS
[realworld] Activate START
[realworld] Configure START
[realworld] Configure SUCCESS
[realworld] Activate SUCCESS
[realworld] Test START

Page 4 of 6

https://github.com/gothinkster/vue-realworld-example-app
https://github.com/gothinkster/angular-realworld-example-app
https://github.com/gothinkster/react-redux-realworld-example-app

RealWorld Application with InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Use the following URL to view the result:
http://172.17.0.2:52773/csp/sys/%25UnitTest.Portal.Indices.cls?Index=4&$NAMESPACE=USE
R
All PASSED
[realworld] Test SUCCESS

Notes
There are a few issues I'm faced with during the development of this project.

%JSON.Adaptor
It works quite well for importing entirely new objects. But, if you would need to partially update the
existing object, %JSONImport will not work, for required fields, which it expects to see in a coming
JSON.

So, instead of using %JSONImport for updating objects, I've used a simple set from
incoming JSON to object if a value is defined.

Export available only to string, stream, and to the output device. Export to Native JSON not
available.

API required to return any object wrapped by another object with a property named as a type
of returned object. And solved it with using %JSONExportToString, and for arrays, converted
to Native JSON

Ignores export for empty collection properties, such as array and list. While an application may
expect to get even empty array for the field, but it does not get any field at all.

Did not solve it. Too tricky to solve it without solving it on %JSON.Adapter side.
%REST - Generator for REST implementation, and REST implementation itself

Any compilation of `spec` class will update `impl` class, even if no changes were there. So, it's
important to keep generated parts, such as Method names, parameters list, and variable names, the
same, or it will be overwritten with the next compile of `spec`, which may happen when the
application will be built for production.
It's ok for REST to have endpoint like `/users` and get requests as `/users/` and in this case, it
should act the same. But %CSP.REST does not recognize second if defined only the first way.

To solve this issue, had to change swagger specification, with just duplication of `/users`
with new endpoint `/users/`

Swagger specification defines default values for parametrized requests, and generator just ignores it
Manually set default values, right in code of methods/ Generator may just overwrite
methods definition, and setting default values to parameters will be removed. So, it may
break implementation after deployment.

Methods from %REST.REST not available for overriding, it used by `disp` class only, and will be
completely overwritten by compilation of `spec` class.

No access to OnPreDispatch method for instance, so, no way to have some more control
on, like to check access

Swagger specification defines which endpoint is public and which requires authorization. %REST
generator just does not use it.

API requires to use JWT to authorize requests and had to manually check which endpoint
needs to check access. Using JWT also quite tricky in IRIS, outside of %OAuth2
implementation.

Generated Methods in `impl` class supposed to return Native JSON objects, streams, or string. But I
think it would be good if it would accept %JSON.Adaptor objects as well.

Anyway, it was very interesting to implement such kind of application. And see how it is possible to do it with IRIS.

This application uses this list of features in IRIS.

Native JSON + %JSON.Adaptor
REST, and it's implementation generator by swagger specification

Page 5 of 6

RealWorld Application with InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

JWT from OAuth2
Containerization

Contest

This project is participating in InterSystems Full Stack Contest, please vote there if you like it.

#Angular #CaretDev #Contest #JSON #OAuth2 #React #REST API #Vue.js #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/realworld-application-intersystems-iris

Page 6 of 6

https://openexchange.intersystems.com/contest/current
https://community.intersystems.com/post/intersystems-full-stack-contest-voting-time
https://community.intersystems.com/tags/angular
https://community.intersystems.com/tags/caretdev
https://community.intersystems.com/tags/contest
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/react
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/vuejs
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/realworld-intersystems-iris
https://community.intersystems.com/post/realworld-application-intersystems-iris

