
ObjectScript error management
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Daniel Tamajon · Sep 1, 2020 5m read
 Open Exchange

ObjectScript error management
Error management on InterSystems languages has been evolving along time. Next, we will show the different
implementations and why you should use the TRY/THROW/CATCH mechanism.

You can read official error recommendations here.

InterSystems will not mark as obsoletes the non-recommended error management methods to allow giving support
to legacy applications. We recommend using tools like objectscriptQuality to detect that legacy unrecommended
usage along with many other possible issues and bugs.

$ZERROR
$ZERROR is the older error management mechanism, supporting different implementations from standard "M".
Nowadays is being yet accepted but highly unrecommended.

It is really easy to do a wrong design usage of $ZERROR assuming you already have control over the variable.
$ZERROR is a global public variable, accessible and alterable by any routine (from InterSystems or custom) that is
being executed in the current process. So, its value is only reliable at the very same moment in which the error is
produced. InterSystems does not guarantee that $ZERROR holds an old value on a call to a system library.

Let's analyze some cases.

Case 1: Error code on custom code
Line Code Comments $ZERROR value
1 Set ... ""
2 Set ... ""
... Do ... ""
... ... ""
N-m Do CacheMethodCall() Call to another Caché

system methods
""

... ""
N Set VarXX = MyMethod() The custom method

generates an ObjectScript
error

<UNDEFINED>B+3^Infinity
Method *varPatient

N+1 Set … <UNDEFINED>B+3^Infinity
Method *varPatient

N+2 Do OtherCacheMethodCall()Caché system method.
$ZERROR is not updated if
there is no error.

<UNDEFINED>B+3^Infinity
Method *varPatient

... If ... <UNDEFINED>B+3^Infinity
Method *varPatient

... ... <UNDEFINED>B+3^Infinity
Method *varPatient

... While ... <UNDEFINED>B+3^Infinity
Method *varPatient

... If $ZERROR’=”” Quit “Error” <UNDEFINED>B+3^Infinity
Method *varPatient

N+m Quit "OK" <UNDEFINED>B+3^Infinity

Page 1 of 4

https://community.intersystems.com/user/daniel-tamajon
https://openexchange.intersystems.com/package/objectscriptQuality
https://openexchange.intersystems.com/package/objectscriptQuality
https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=GCOS_errors
https://objectscriptquality.com/

ObjectScript error management
Published on InterSystems Developer Community (https://community.intersystems.com)

Line Code Comments $ZERROR value
Method *varPatient

Caso 2: False positive given to internal Caché error

In that case, custom code has gone fine but an error has been raised from internal Caché error.
Line Code Comments $ZERROR value
1 Set … ""
2 Set … ""
.. Do … ""
.. … ""
N-m Do CacheMethodCall() Internal error but it is

managed internally and
decides to continue
execution

<UNDEFINED>occKl+3^
MetodoInternoCache
*o0bxVar

.. <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N Set VarXX = MyMethod() //
OK

 <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N+1 Set … <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N+2 Do OtherCacheMethodCall()
// OK

 <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

… If … <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

… … <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

… While … <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

… If $ZERROR’="" Quit "Error" An error is detected while
there is no error at all

<UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N+m Quit "OK" <UNDEFINED>occKl+3^
MetodoInterno *o0bxVa

Caso 3: False-negative has given to $ZERROR reset in Caché internal code

In that case, there is a direct or indirect call to an internal Caché method or routine that resets the public variable
$ZERROR even while there is no error situation.
Line Code Comments $ZERROR
1 Set ... ""
2 Set ... ""
... Do ... ""
... ... ""
N-m Do CacheMethodCall() <UNDEFINED>occKl+3^

MetodoInternoCache
*o0bxVar

... <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N Set VarXX = MyMethod() <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N+1 Set … <UNDEFINED>occKl+3^
MetodoInterno *o0bxVar

N+2 Do OtherCacheMethodCall() Internal method that resets
$ZERROR whether there is
error or not

""

... If ... ""

... ... ""

Page 2 of 4

ObjectScript error management
Published on InterSystems Developer Community (https://community.intersystems.com)

Line Code Comments $ZERROR
... While ... ""
... If $ZERROR’="" Quit "Error" Error not detected ""
N+m Quit "OK" ""

$ZTRAP
With $ZTRAP the error is managed in a context, so there is no risk to be overwritten unexpectedly outside the
context. When an error arises, the control is returned to the first error control in the call stack.

When an error is raised and the error has been handled, you must clear $ZTRAP in order to avoid possible infinite
loop if another error occurs.

So, $ZTRAP is more advanced than $ZERROR in error management but yet delegates the need to add operations
by the developer that can generate more errors.

Check the section Handling errors with $ZTRAP in the official documentation for a deeper understanding of using
this method.

%Status
That method is being used by system libraries, so this is the mechanism that must be used when doing a call to
system libraries.

You can check how to use it here.

TRY/THROW/CATCH
That is the most modern error management method and the currently recommended method.

You can check how to use it here.

This method manage errors in context and does not delegate on developer the management of internal error
variables.

Advantages

There is a lot of literature about the TRY/THROW/CATCH method, so let's enumerate just some advantages:

Allows you to decide what to do in case of exception in a clean way, separating error code handling from
regular code
Simplifies error detection, as you don't need to check for errors after each operation
Allows error propagation to upper layers
Supports runtime error, allowing to recover and continue running after a crash

Disadvantages

The loss of slight performance is the most remarkable disadvantage, so it's important to know when you have to
use it or not.

Usually, it is not necessary to use TRY/THROW/CATCH on each method and many times simple validations before
some operations will avoid errors avoiding also the unnecessary use of TRY/THROW/CATCH.

Page 3 of 4

https://docs.intersystems.com/irisforhealth20193/csp/docbook/Doc.View.cls?KEY=GCOS_errors#GCOS_errors_handler
https://docs.intersystems.com/irisforhealth20193/csp/docbook/Doc.View.cls?KEY=GCOS_errors#GCOS_errors_statcodes
https://docs.intersystems.com/irisforhealth20193/csp/docbook/Doc.View.cls?KEY=GCOS_errors#GCOS_errors_ttc

ObjectScript error management
Published on InterSystems Developer Community (https://community.intersystems.com)

Conclusions
Avoid using $ZERROR and $ZTRAP.

Use %STATUS only when doing a call to system libraries.

Manage your errors using the TRY/THROW/CATCH method but without abusing.

#Error Handling #ObjectScript #Caché #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/objectscript-error-management

Page 4 of 4

https://community.intersystems.com/tags/error-handling
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/objectscriptQuality
https://community.intersystems.com/post/objectscript-error-management

