
Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Zhong Li · Aug 23, 2020 15m read

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Keywords: IRIS, IntegratedML, Machine Learning, Covid-19, Kaggle

Continued from the previous Part I ... In part I, we walked through traditional ML approaches on this Covid-19
dataset on Kaggle.

In this Part II, let's run the same data & task, in its simplest possible form, through IRIS integratedML which is a
nice & sleek SQL interface for backend AutoML options. It uses the same environment.

IntegratedML Approach?

How to load data into IRIS

integredML-demo-template defined various ways to load data into IRIS. For example, I can define a custom IRIS
class specific to this xls file in CSV format then load it into an IRIS table. It allows better control for large data
volumes.

However, in this post I go for a simplified and lazy method, by just loading the whole dataframe into an IRIS table
via a customised Python function I scratched up. Doing such allows us save various stages of the raw or
processed dataframes into IRIS anytime, for like-alike comparisons with previous ML approach.

def to_sql_iris(cursor, dataFrame, tableName, schemaName='SQLUser', drop_table=False
):
 """"
 Dynamically insert dataframe into an IRIS table via SQL by "excutemany"

 Inputs:
 cursor: Python JDBC or PyODBC cursor from a valid and establised DB
connection
 dataFrame: Pandas dataframe
 tablename: IRIS SQL table to be created, inserted or apended
 schemaName: IRIS schemaName, default to "SQLUser"
 drop_table: If the table already exsits, drop it and re-
create it if True; othrewise keep it and appen
 Output:
 True is successful; False if there is any exception.
 """
 if drop_table:
 try:
 curs.execute("DROP TABLE %s.%s" %(schemaName, tableName))
 except Exception:
 pass

 try:
 dataFrame.columns = dataFrame.columns.str.replace("[() -]", "_")
 curs.execute(pd.io.sql.get_schema(dataFrame, tableName))

Page 1 of 10

https://community.intersystems.com/user/zhong-li-0
https://community.intersystems.com/post/run-some-covid-19-icu-predictions-ml-vs-integratedml-part-i
https://openexchange.intersystems.com/package/integratedml-demo-template
https://community.intersystems.com/post/save-pandas-dataframe-iris-quick-note
https://community.intersystems.com/post/save-pandas-dataframe-iris-quick-note

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

 except Exception:
 pass

 curs.fast_executemany = True
 cols = ", ".join([str(i) for i in dataFrame.columns.tolist()])
 wildc =''.join('?, ' * len(dataFrame.columns))
 wildc = '(' + wildc[:-2] + ')'
 sql = "INSERT INTO " + tableName + " (" + cols.replace('-', '_') + ") VALUE
S" + wildc
 #print(sql)
 curs.executemany(sql, list(dataFrame.itertuples(index=False, name=None)))
 return True

Setup Python JDBC connection

import numpy as np
import pandas as pd
from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve
import seaborn as sns
sns.set(style="whitegrid")

import jaydebeapi
url = "jdbc:IRIS://irisimlsvr:51773/USER"
driver = 'com.intersystems.jdbc.IRISDriver'
user = "SUPERUSER"
password = "SYS"
jarfile = "./intersystems-jdbc-3.1.0.jar"

conn = jaydebeapi.connect(driver, url, [user, password], jarfile)
curs = conn.cursor()

Set up starting data point

For like-alike comparisons, I started from the data frame after feature selections in the previous post (in is section
"Feature Selection - Final Selection"), where "DataS" is the exact dataframe that we would start here.

data = dataS
data = pd.get_dummies(data)
data.AGE_ABOVE65 = data.AGE_ABOVE65.astype(int)
data.ICU = data.ICU.astype(int)
data_new = data
data_new

Page 2 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

 AGE
_AB
OVE
65

GEN
DER

HTN OTH
ER

CAL
CIU
M_M
EDI
AN

CAL
CIU
M_M
IN

CAL
CIU
M_M
AX

CRE
ATIN
IN_
MED
IAN

CRE
ATIN
IN_
MEA
N

CRE
ATIN
IN_
MIN

... HEA
RT_
RAT
E_DI
FF_
REL

RES
PIR
ATO
RY_
RAT
E_DI
FF_
REL

TEM
PER
ATU
RE_
DIFF
_RE
L

OXY
GEN
_SA
TUR
ATI
ON_
DIFF
_RE
L

ICU WIN
DO
W_0
-2

WIN
DO
W_2
-4

WIN
DO
W_4
-6

WIN
DO
W_6
-12

WIN
DO
W_A
BOV
E_12

0 1 0.0 0.0 1.0 0.33
0359

0.33
0359

0.33
0359

-0.89
1078

-0.89
1078

-0.89
1078

... -1.00
0000

-1.00
0000

-1.00
0000

-1.00
0000

0 1 0 0 0 0

1 1 0.0 0.0 1.0 0.33
0359

0.33
0359

0.33
0359

-0.89
1078

-0.89
1078

-0.89
1078

... -1.00
0000

-1.00
0000

-1.00
0000

-1.00
0000

0 0 1 0 0 0

2 1 0.0 0.0 1.0 0.18
3673

0.18
3673

0.18
3673

-0.86
8365

-0.86
8365

-0.86
8365

... -0.81
7800

-0.71
9147

-0.77
1327

-0.88
6982

0 0 0 1 0 0

3 1 0.0 0.0 1.0 0.33
0359

0.33
0359

0.33
0359

-0.89
1078

-0.89
1078

-0.89
1078

... -0.81
7800

-0.71
9147

-1.00
0000

-1.00
0000

0 0 0 0 1 0

4 1 0.0 0.0 1.0 0.32
6531

0.32
6531

0.32
6531

-0.92
6398

-0.92
6398

-0.92
6398

... -0.23
0462

0.09
6774

-0.24
2282

-0.81
4433

1 0 0 0 0 1

... ...
19200 1.0 0.0 1.0 0.33

0359
0.33
0359

0.33
0359

-0.89
1078

-0.89
1078

-0.89
1078

... -1.00
0000

-1.00
0000

-1.00
0000

-1.00
0000

0 1 0 0 0 0

19210 1.0 0.0 1.0 0.24
4898

0.24
4898

0.24
4898

-0.93
4890

-0.93
4890

-0.93
4890

... -1.00
0000

-1.00
0000

-1.00
0000

-1.00
0000

0 0 1 0 0 0

19220 1.0 0.0 1.0 0.33
0359

0.33
0359

0.33
0359

-0.89
1078

-0.89
1078

-0.89
1078

... -1.00
0000

-1.00
0000

-1.00
0000

-1.00
0000

0 0 0 1 0 0

19230 1.0 0.0 1.0 0.33
0359

0.33
0359

0.33
0359

-0.89
1078

-0.89
1078

-0.89
1078

... -1.00
0000

-1.00
0000

-1.00
0000

-1.00
0000

0 0 0 0 1 0

19240 1.0 0.0 1.0 0.30
6122

0.30
6122

0.30
6122

-0.94
4798

-0.94
4798

-0.94
4798

... -0.76
3868

-0.61
2903

-0.55
1337

-0.83
5052

0 0 0 0 0 1

1925 rows × 62 columns

The above indicated we had 58 selected features plus those another 4 features that was converted from the
previous non-numeric column ('WINDOW').

Save data into IRIS table

We use the above to_sql_iris function to save the data into IRIS table "CovidPPP62":

iris_schema = 'SQLUser'
iris_table = 'CovidPPP62'

to_sql_iris(curs, data_new, iris_table, iris_schema, drop_table=True)

df2 = pd.read_sql("SELECT COUNT(*) from %s.%s" %(iris_schema, iris_table),conn)
display(df2)

 Aggregate_1
0 1925

Page 3 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

Then define the training view name, model name, and training target column which is 'ICU' in this case.

dataTable = iris_table
dataTableViewTrain = dataTable + 'Train1'
dataTablePredict = dataTable + 'Predict1'
dataColumn = 'ICU'
dataColumnPredict = 'ICUPredicted'
modelName = "ICUP621" #chose a name - must be unique in server end

Then we can split the data into a Training View (1700 rows) and a Test View (225 rows). We don't have to do this
in Integrated ML; it's just for comparisons purpose with previous post.

curs.execute("CREATE VIEW %s AS SELECT * FROM %s WHERE ID<=1700" % (dataTableViewTrai
n, dataTable))

df62 = pd.read_sql("SELECT * from %s" % dataTableViewTrain, conn)
display(df62)
print(dataTableViewTrain, modelName, dataColumn)

CovidPPP62Train1 ICUP621 ICU

Train model by IntegratedML's default AutoML

curs.execute("CREATE MODEL %s PREDICTING (%s) FROM %s" % (modelName, dataColumn, dat
aTableViewTrain))

curs.execute("TRAIN MODEL %s FROM %s" % (modelName, dataTableViewTrain))

df3 = pd.read_sql("SELECT * FROM INFORMATION_SCHEMA.ML_TRAINED_MODELS", conn)
display(df3)

 MODEL_NAME TRAINED_MOD
EL_NAME

PROVIDER TRAINED_TIME
STAMP

MODEL_TYPE MODEL_INFO

9 ICUP621 ICUP6212 AutoML 2020-07-22 19:
28:16.174000

classification ModelType:Ran
dom Forest, Pa
ckage:sklearn,
Prob...

So, we can see the result shows IntegratedML automatically chose "ModelType" as "Random Forest", and treat the
problem as a "Classification" task. That's exactly we achieved out of the lengthy model comparisons and
selections by box plot, as well as lengthy model parameter tuning by grid search etc within the previous post, right?

Note: the above SQL is the bare minimum per IntegratedML syntax. I didn't specify any training approach or model

Page 4 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

selection, nor did set any backend ML platform. Everything was left to IML's decision, and it somewhat manages to
achieve its internal training strategy, then settled down to a reasonable model with the correct end results. I'd say
it's slightly beyond my expectations.

Let's do a quick like-alike test run of the currently trained model on our reserved test set.

Predict result on test data

We used 1700 rows for training. Below we create a view of test data with the left 225 rows, and run SELECT
PREDICT on these records. We will save the predicted result into 'dataTablePredict', and load it into 'df62' as data
frame.

dataTableViewTest = "SQLUSER.DTT621"
curs.execute("CREATE VIEW %s AS SELECT * FROM %s WHERE ID > 1700" % (dataTableViewTes
t, dataTable))

curs.execute("DROP TABLE %s" % dataTablePredict)
curs.execute("Create Table %s (%s VARCHAR(100), %s VARCHAR(100))" % (dataTablePredict
, dataColumnPredict, dataColumn))

curs.execute("INSERT INTO %s SELECT PREDICT(%s) AS %s, %s FROM %s" % (dataTablePredi
ct, modelName, dataColumnPredict, dataColumn, dataTableViewTest))

df62 = pd.read_sql("SELECT * from %s ORDER BY ID" % dataTablePredict, conn)
display(df62)

Manually calculate its confusion matrix - we don't have to do this. It's just for comparison purpose:

TP = df62[(df62['ICUPredicted'] == '1') & (df62['ICU']=='1')].count()['ICU']
TN = df62[(df62['ICUPredicted'] == '0') & (df62['ICU']=='0')].count()["ICU"]
FN = df62[(df62['ICU'] == '1') & (df62['ICUPredicted']=='0')].count()["ICU"]
FP = df62[(df62['ICUPredicted'] == '1') & (df62['ICU']=='0')].count()["ICU"]
print(TP, FN, '\n', FP, TN)
precision = (TP)/(TP+FP)
recall = (TP)/(TP+FN)
f1 = ((precision*recall)/(precision+recall))*2
accuracy = (TP+TN) / (TP+TN+FP+FN)
print("Precision: ", precision, " Recall: ", recall, " F1: ", f1, " Accuracy: ", accu
racy)

34 20
 8 163
Precision: 0.8095238095238095 Recall: 0.6296296296296297 F1: 0.7083333333333334
 Accuracy: 0.8755555555555555

Or we can use the IntegratedML syntax to get its built-in confusion matrix:

Page 5 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

validate the test data
curs.execute("VALIDATE MODEL %s FROM %s" % (modelName, dataTableViewTest))
df5 = pd.read_sql("SELECT * FROM INFORMATION_SCHEMA.ML_VALIDATION_METRICS", conn)
df6 = df5.pivot(index='VALIDATION_RUN_NAME', columns='METRIC_NAME', values='METRIC_VA
LUE')
display(df6)

METRIC_NAME Accuracy F-Measure Precision Recall
VALIDATION_RUN_N
AME

ICUP62121 0.88 0.71 0.81 0.63
...

Comparing with the "Orignal Result" in section "Run Basic LR Training" in Part I, the above result has a Recall 63%
vs. 57%, and Accuracy 88% vs 85%. So it is a better result with IntegratedML.

Re-train IntegratedML on re-balanced training data via SMOTE

The above test was done on imbalanced data, in which ICU Admitted vs. Non-admitted has a ratio of 1:3. So as in
previous post, let's simply SMOTE it to make the data balanced, then re-run the IML pipeline above.

'X_train_res' and 'y_train_res' are dataframes after SMOTE from the previous Part I in its section "Run Basic LR
Training"

df_x_train = pd.DataFrame(X_train_res)
df_y_train = pd.DataFrame(y_train_res)
df_y_train.columns=['ICU']

df_smote = pd.concat([df_x_train, df_y_train], 1)
display(df_smote)

iris_schema = 'SQLUser' iris_table = 'CovidSmote' to_sql_iris(curs, df_smote,
iris_table, iris_schema, drop_table=True) # save it into a new IRIS table of
specified name df2 = pd.read_sql("SELECT COUNT(*) from %s.%s" %(iris_schema,
iris_table),conn) display(df2)

 Aggregate_1
0 2490

Now the dataset has 2490 rows instead of 1700, since SMOTE enriched more records with ICU = 1.

dataTable = iris_table
dataTableViewTrain = dataTable + 'TrainSmote'
dataTablePredict = dataTable + 'PredictSmote'
dataColumn = 'ICU'
dataColumnPredict = 'ICUPredictedSmote'
modelName = "ICUSmote1" #chose a name - must be unique in server end

Page 6 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

curs.execute("CREATE VIEW %s AS SELECT * FROM %s" % (dataTableViewTrain, dataTable))

df_smote = pd.read_sql("SELECT * from %s" % dataTableViewTrain, conn)
display(df_smote)
print(dataTableViewTrain, modelName, dataColumn)

CovidSmoteTrainSmote ICUSmote1 ICU

curs.execute("CREATE MODEL %s PREDICTING (%s) FROM %s" % (modelName, dataColumn, dat
aTableViewTrain))

curs.execute("TRAIN MODEL %s FROM %s" % (modelName, dataTableViewTrain))

df3 = pd.read_sql("SELECT * FROM INFORMATION_SCHEMA.ML_TRAINED_MODELS", conn)
display(df3)

 MODEL_NAME TRAINED_MOD
EL_NAME

PROVIDER TRAINED_TIME
STAMP

MODEL_TYPE MODEL_INFO

9 ICUP621 ICUP6212 AutoML 2020-07-22 19:
28:16.174000

classification ModelType:Ran
dom Forest, Pa
ckage:sklearn,
Prob...

12 ICUSmote1 ICUSmote12 AutoML 2020-07-22 20:
49:13.980000

classification ModelType:Ran
dom Forest, Pa
ckage:sklearn,
Prob...

Then we re-prepare the reserved set of 225 test data rows, ad run the SMOTE re-trained model on them:

df_x_test = pd.DataFrame(X3_test)
df_y_test = pd.DataFrame(y3_test)
df_y_test.columns=['ICU']

df_test_smote = pd.concat([df_x_test, df_y_test], 1)
display(df_test_smote)

iris_schema = 'SQLUser'
iris_table = 'CovidTestSmote'

to_sql_iris(curs, df_test_smote, iris_table, iris_schema, drop_table=True)

dataTableViewTest = "SQLUSER.DTestSmote225"

Page 7 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

curs.execute("CREATE VIEW %s AS SELECT * FROM %s" % (dataTableViewTest, iris_table))
curs.execute("Create Table %s (%s VARCHAR(100), %s VARCHAR(100))" % (dataTablePredict
, dataColumnPredict, dataColumn))
curs.execute("INSERT INTO %s SELECT PREDICT(%s) AS %s, %s FROM %s" % (dataTablePredi
ct, modelName, dataColumnPredict, dataColumn, dataTableViewTest))

df62 = pd.read_sql("SELECT * from %s ORDER BY ID" % dataTablePredict, conn)
display(df62)

TP = df62[(df62['ICUPredictedSmote'] == '1') & (df62['ICU']=='1')].count()['ICU']

TN = df62[(df62['ICUPredictedSmote'] == '0') & (df62['ICU']=='0')].count()["ICU"]
FN = df62[(df62['ICU'] == '1') & (df62['ICUPredictedSmote']=='0')].count()["ICU"]
FP = df62[(df62['ICUPredictedSmote'] == '1') & (df62['ICU']=='0')].count()["ICU"]
print(TP, FN, '\n', FP, TN)
precision = (TP)/(TP+FP)
recall = (TP)/(TP+FN)
f1 = ((precision*recall)/(precision+recall))*2
accuracy = (TP+TN) / (TP+TN+FP+FN)
print("Precision: ", precision, " Recall: ", recall, " F1: ", f1, " Accuracy: ", accu
racy)

45 15
 9 156
Precision: 0.8333333333333334 Recall: 0.75 F1: 0.7894736842105262 Accuracy: 0.
8933333333333333

validate the test data via SMOTE re-trained model
curs.execute("VALIDATE MODEL %s FROM %s" % (modelName, dataTableViewTest)) #Covid19
aTest500, Covid19aTrain1000
df5 = pd.read_sql("SELECT * FROM INFORMATION_SCHEMA.ML_VALIDATION_METRICS", conn)
df6 = df5.pivot(index='VALIDATION_RUN_NAME', columns='METRIC_NAME', values='METRIC_VA
LUE')
display(df6)

METRIC_NAME Accuracy F-Measure Precision Recall
VALIDATION_RUN_N
AME

ICUP62121 0.88 0.71 0.81 0.63
ICUSmote122 0.89 0.79 0.83 0.75

The result indicated a significantly better Recall of 75% over previous 63%, and a slightly better Accuracy and F1
score.

More noticeably, this result is in line with our "tradition ML approach" in the previous post, after intensive "model
selection" and "parameter tuning by grid searches" as recorded in section "Run Selected Model by further
"Parameter Tuning via Grid Search". So the IML result is not bad at all.

Change to IntegratedML's H2O provider

Page 8 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

We can change the IML's AutoML provider by a single line, then re-train the model as done in the previous step:

curs.execute("SET ML CONFIGURATION %H2O; ")

modelName = 'ICUSmoteH2O'
print(dataTableViewTrain)
curs.execute("CREATE MODEL %s PREDICTING (%s) FROM %s" % (modelName, dataColumn, dat
aTableViewTrain))
curs.execute("TRAIN MODEL %s FROM %s" % (modelName, dataTableViewTrain))

df3 = pd.read_sql("SELECT * FROM INFORMATION_SCHEMA.ML_TRAINED_MODELS", conn)
display(df3)

 MODEL_NAME TRAINED_MOD
EL_NAME

PROVIDER TRAINED_TIME
STAMP

MODEL_TYPE MODEL_INFO

12 ICUSmote1 ICUSmote12 AutoML 2020-07-22 20:
49:13.980000

classification ModelType:Ran
dom Forest, Pa
ckage:sklearn,
Prob...

13 ICUPPP62 ICUPPP622 AutoML 2020-07-22 17:
48:10.964000

classification ModelType:Ran
dom Forest, Pa
ckage:sklearn,
Prob...

14 ICUSmoteH2O ICUSmoteH2O2H2O 2020-07-22 21:
17:06.990000

classification None

validate the test data
curs.execute("VALIDATE MODEL %s FROM %s" % (modelName, dataTableViewTest)) #Covid19
aTest500, Covid19aTrain1000
df5 = pd.read_sql("SELECT * FROM INFORMATION_SCHEMA.ML_VALIDATION_METRICS", conn)
df6 = df5.pivot(index='VALIDATION_RUN_NAME', columns='METRIC_NAME', values='METRIC_VA
LUE')
display(df6)

METRIC_NAME Accuracy F-Measure Precision Recall
VALIDATION_RUN_N
AME

ICUP62121 0.88 0.71 0.81 0.63
ICUSmote122 0.89 0.79 0.83 0.75
ICUSmoteH2O21 0.90 0.79 0.86 0.73

The result seems to show that H2O AutoML has a slightly better Accuracy, the same F1, but a slightly less Recall.
However, our core objective in this Covid19 ICU task is to minimise the False Negatives if we could. So it seems
that the provider change to H2O didn't drive up our target performance yet.

Certainly, I would like to test IntegratedML's DataRobot Provider as well, but unfortunately I don't have an API key
from DataRobot yet, so I will park it here.

Page 9 of 10

Run some Covid-19 ICU predictions via ML vs. IntegratedML (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

Recap:
1. Performance: For this specific Covid-19 ICU task, our test comparisons indicate that the IRIS IntegratedML's
performance is at least on par with or similar to traditional ML results like-alike. In this specific case IntegratedML
was able to automatically choose the internal training strategy correctly, and appeared to settle down the right
model, and delivered the expected result.

2. Simplicity: IntegratedML has a much more simplified process than traditional ML pipelines. As shown above, I
don't need to bother anything with Model Selection and Parameter Tuning etc etc routine data scientist jobs
anymore, while achieving equivalent performance. I don't actually need Feature Selection either, if not for
comparability purpose. Also, I only used IntegratedML bare minimum syntax as shown in the demo notebook of
Integrated-demo-template. Sure, the downside is we would sacrifice the customisation and fine-tuning capabilities
of common data science tools via its traditional pipelines, however, this is also more or less true to other AutoML
platforms as well.

3. Data pre-processing still matters: There is no silver bullet unfortunately; or say, silver bullet would need time.
Specific to this Covid19 ICU task, the above tests show that data still matters a lot to current IntegratedML: raw
data, selected features with imputed missing data, and re-balanced data with basic SMOTE over-sampling, they all
resulted in significantly different performance. This is true to both IML's default AutoML and its H2O provider. I
imagine DataRobot might claim a slightly better performance but to be further tested with IntegratedML's SQL
wrapper. In short, data normalisation still matters in IntegratedML.

4. Deployability: I didn't compare its deployability, API management, Monitoring, and non-functional Serviceability
etc etc yet - we can do it in next post.

Next
1. Model deployments: So far we did some demo AI on Covid-19 X-Rays, and Covid-19 ICU predictions on vital
signs and observations. Can we deploy them into Flask/FastAPI and IRIS service stacks, and expose their demo
ML/DL capabilities via REST/JSON APIs? Sure we can try such in next post. After then we could add on more
demo AI capabilities over the time, including NLP APIs etc.

2. FHIR wrapped API Interoperability: We also have FHIR template, as well as IRIS Native API etc in this
developer community. Could we turn our demo AI service into SMART on FHIR apps, or FHIR wrapped AI services
per corresponding standards - could we try such? And please remember in IRIS product line we also have API
Gateway, ICM with Kubernetes support, and SAM etc that we could leverage too with our AI demo stacks.

3. Demo Integration with HealthShare Clinical Viewer and/or Trak etc? I briefly showed a demo integration of a 3rd
party AI vendor's PACS Viewer (for Covid-19 CTs) with HealthShare Clinical Viewer, hence maybe we could finish
that hiking with our own AI demo services too, in various specialty domains over the time.

#IntegratedML #Machine Learning (ML) #InterSystems IRIS

 Source
URL:https://community.intersystems.com/post/run-some-covid-19-icu-predictions-ml-vs-integratedml-part-ii

Page 10 of 10

https://community.intersystems.com/post/run-some-covid-19-lung-x-ray-classification-and-ct-detection-demos
https://community.intersystems.com/post/run-some-covid-19-lung-x-ray-classification-and-ct-detection-demos
https://community.intersystems.com/tags/integratedml
https://community.intersystems.com/tags/machine-learning-ml
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/run-some-covid-19-icu-predictions-ml-vs-integratedml-part-ii

