Dynamically changing production items poolsize
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Daniel Kutac - Aug 21,2020 3 read

Open Exchange

Dynamically changing production items poolsize

Dynamic PoolSize (DPS) Experiment

Purpose:

Enhance Ensemble or IRIS production so it can dynamically allocate pool size for adapter-based
components based on their utilization.

Sometimes, an unexpected traffic volume occurs, and default pool size allocated to production
components may become a bottleneck. To avoid such situations, | created a demonstrator project some
2 years ago to see, whether it would be possible and feasible to modify production, so it allowed for
dynamically modifying its components per their load.

Implementation description:

Create class Ext.DynaPool.PoolManager.Adapter class and inject it to Ens.Adapter (modify and compile
Ens.Adapter class) so it adds new properties used by the DPS infrastructure. These properties will be
configurable in the production settings. Make sure all adapter classes are recompiled in order to benefit
from the new feature.

Properties:

* AllowDynamicPoolResize (Boolean) - this enables dynamic pool size allocation

* MaximumPoolSize (Integer) — this limits maximum pool size allowed to avoid oversizing and killing
server performance due too many concurrent jobs

Page 1 of 4

https://community.intersystems.com/user/daniel-kutac
https://openexchange.intersystems.com/package/dynapool
https://openexchange.intersystems.com/package/dynapool

Dynamically changing production items poolsize
Published on InterSystems Developer Community (https://community.intersystems.com)

Production Settings u ‘

Operations + Settings] Queue | Log| Messages | Jobs|Act\'ons‘
@ Ens.Activity.Operation.Local v & |
@ Store from Dynamic Service Apply Search:
@ store from Static Service v Connection Settings
JDBC Driver
JDBC Classpath

Connection Attributes

v Pool

AllowDynamicPoolResize

MaximumPoolSize

v Additional Settings

Schedule

v 5

Create a new component (service) — Ext.DynaPool.PoolManager.Service. This service scans periodically
all production items and for those that are adapter based and have enabled AllowDynamicPoolResize
performs queue length check.

In future, OS related data could be collected too, like CPU usage, memory usage as these data could be
used to determine pool size for a given load.

All retrieved data are stored in a persistent classes - Ext.DynaPool.PoolManager.Storage.Snapshot — for
storing current values and Ext.DynaPool.PoolManager.Storage.History — for storing historical data.

Add Ens.ProductionMonitorService (this is a service that comes with Ensemble installation) to the
production.

The Ext.DynaPool.PoolManager.Service class contains method NeedPoolResize() that is a placeholder
for implementing code that determines pool sizes of applicable components. Currently, an empirical
formula was implemented but depending on site characteristics a new formula needs to be developed
that would use collected information and determine which of production items need to resize the pool
size. For all these items, a new pool size will be set. This service also performs production update when
necessary to start new jobs or terminate unnecessary jobs depending on new pool sizes.

Testing:

Start production and open terminal. From terminal run this command:

Page 2 of 4

Dynamically changing production items poolsize
Published on InterSystems Developer Community (https://community.intersystems.com)

d ##class(DPS.Test.Util.Generator).Generate(10)

This command populates several files with random strings. A test production is provided with project that
consists of two file services consuming incoming files and sending them to operation for storing data into
database. One service (DPS.Test.Service.FileService) is configured to use dynamic pool size allocation
and the other uses one static pool size. There are two operations (DPS.Test.Operation.Database.Store),
and again, one is using also static pool size whilst the other one uses static pool size.

A complimentary Analytics Dashboard is provided that shows both queue length and pool size for each
component with dynamic pool size allocation.

Pict. Dashboard

% + Dynamic Queue Size

8000

6000

4000

2000 T

TR

x + Dynamic Pool Size

10.0
@ oynamic Pool

Manual reset of pool size,
o+ i SENEEEENEEREEE 11l 1 IIEENEEE NS Ll then restart of production
' with load simulation

Please note — the code is written for Windows environment, modify it accordingly when testing in other
operating system.

Considerations:

Page 3 of 4

Dynamically changing production items poolsize
Published on InterSystems Developer Community (https://community.intersystems.com)

* Make sure resizing is not happening too often as this involves component interruption and adds
overhead on its own.

Disclaimer:

This code is just an experiment, it has never been tested in real productions and in its current
implementation is not intended for production deployment! But perhaps it would serve as a source of
ideas (good or bad 00).

There is also a hack used in Ext.DynaPool.PoolManager.Service class that might deserve refactoring.
On the other hand, there is no harm to production data as it only deals with statistics historical data.

You can find project files in the Open Exchange.
Enjoy!

#Interoperability #Performance #Ensemble #InterSystems IRIS
Check the related application on InterSystems Open Exchange

Source URL:https://community.intersystems.com/post/dynamically-changing-production-items-poolsize

Page 4 of 4

https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/performance
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/dynapool
https://community.intersystems.com/post/dynamically-changing-production-items-poolsize

