
Containerising .Net/Java Gateways (or Kafka Integration Demo)
Published on InterSystems Developer Community (https://community.intersystems.com)

        Article      
 Eduard Lebedyuk  · Aug 7, 2020  5m read   
   Open Exchange 
  

Containerising .Net/Java Gateways (or Kafka Integration Demo)
In this article, I will show how you can easily containerize .Net/Java Gateways.

For our example, we will develop an Integration with Apache Kafka.

And to interoperate with Java/.Net code we will use PEX .

 

Architecture
Our solution will run completely in docker and look like this:

 

 

Page 1 of 5

https://community.intersystems.com/user/eduard-lebedyuk
https://openexchange.intersystems.com/package/pex-demo
https://openexchange.intersystems.com/package/pex-demo
https://kafka.apache.org/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=EPEX


Containerising .Net/Java Gateways (or Kafka Integration Demo)
Published on InterSystems Developer Community (https://community.intersystems.com)

Java Gateway
First of all, let's develop Java Operation to send messages into Kafka. The code can be written in your IDE of
choice and it can look like this.

In short:

To develop new PEX Business Operation we need to implement  abstract 
com.intersystems.enslib.pex.BusinessOperation class
Public properties are Business Host Settings
OnInit method is used to init connection to Kafka and get a pointer to InterSystems IRIS
OnTearDown is used to disconnect from Kafka (at process shutdown)
OnMessage receives dc.KafkaRequest message and sends it to Kafka

Now let's pack it into Docker!

Here's our dockerfile:

FROM eclipse-temurin:8-jre-alpine AS builder

ARG APP_HOME=/tmp/app

COPY src $APP_HOME/src

COPY --from=intersystemscommunity/jgw:latest /jgw/*.jar $APP_HOME/jgw/

WORKDIR $APP_HOME/jar/
ADD https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/2.5.0/kafka-
clients-2.5.0.jar .
ADD https://repo1.maven.org/maven2/ch/qos/logback/logback-classic/1.2.3/logback-
classic-1.2.3.jar .
ADD https://repo1.maven.org/maven2/ch/qos/logback/logback-core/1.2.3/logback-
core-1.2.3.jar .
ADD https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.30/slf4j-api-1.7.30.jar .

WORKDIR $APP_HOME/src

RUN javac -classpath $APP_HOME/jar/*:$APP_HOME/jgw/* dc/rmq/KafkaOperation.java && \
    jar -cvf $APP_HOME/jar/KafkaOperation.jar dc/rmq/KafkaOperation.class

FROM intersystemscommunity/jgw:latest

COPY --from=builder /tmp/app/jar/*.jar $GWDIR/

Let's go line by line and see what's going on here (I assume familiarity with multi-stage docker builds):

FROM eclipse-temurin:8-jre-alpine AS builder

Our starting image is JDK 8 (Note that openjdk:8 image is deprecated, use one of the suggested alternatives).

ARG APP_HOME=/tmp/app
COPY src $APP_HOME/src

We're copying our sources from /src folder into /tmp/app folder.

Page 2 of 5

https://github.com/intersystems-community/pex-demo/blob/master/java/src/dc/rmq/KafkaOperation.java
https://github.com/intersystems-community/pex-demo/blob/master/iris/src/dc/KafkaRequest.cls
https://github.com/intersystems-community/pex-demo/blob/master/java/Dockerfile
https://docs.docker.com/develop/develop-images/multistage-build/
https://hub.docker.com/_/openjdk
https://hub.docker.com/_/openjdk


Containerising .Net/Java Gateways (or Kafka Integration Demo)
Published on InterSystems Developer Community (https://community.intersystems.com)

COPY --from=intersystemscommunity/jgw:latest /jgw/*.jar $APP_HOME/jgw/

We're copying Java gateway sources into /tmp/app/jgw folder.

WORKDIR $APP_HOME/jar/
ADD https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/2.5.0/kafka-
clients-2.5.0.jar .
ADD https://repo1.maven.org/maven2/ch/qos/logback/logback-classic/1.2.3/logback-
classic-1.2.3.jar .
ADD https://repo1.maven.org/maven2/ch/qos/logback/logback-core/1.2.3/logback-
core-1.2.3.jar .
ADD https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.30/slf4j-api-1.7.30.jar .

WORKDIR $APP_HOME/src

RUN javac -classpath $APP_HOME/jar/*:$APP_HOME/jgw/* dc/rmq/KafkaOperation.java && \
    jar -cvf $APP_HOME/jar/KafkaOperation.jar dc/rmq/KafkaOperation.class

Now all dependencies are added and javac/jar is called to compile the jar file. For a real-life projects it's better
to use maven or gradle.

FROM intersystemscommunity/jgw:latest

COPY --from=builder /tmp/app/jar/*.jar $GWDIR/

And finally, the jars are copied into base jgw image (base image also takes care of starting the gateway and related
tasks).

.Net Gateway
Next is .Net Service which will receive messages from Kafka. The code can be written in your IDE of choice and it
can look like this.

In short:

To develop new PEX Business Service we need to implement  abstract 
InterSystems.EnsLib.PEX.BusinessService class
Public properties are Business Host Settings
OnInit method is used to init connection to Kafka and subscribe to topics and get a pointer to
InterSystems IRIS
OnTearDown is used to disconnect from Kafka (at process shutdown)
OnMessage consumes messages from Kafka and sends Ens.StringContainer messages to other
Interoperability hosts

Now let's pack it into Docker!

Here's our dockerfile:

FROM mcr.microsoft.com/dotnet/core/sdk:2.1 AS build

ENV ISC_PACKAGE_INSTALLDIR /usr/irissys
ENV GWLIBDIR lib
ENV ISC_LIBDIR ${ISC_PACKAGE_INSTALLDIR}/dev/dotnet/bin/Core21

Page 3 of 5

https://github.com/intersystems-community/pex-demo/blob/master/dotnet/KafkaConsumer.cs
https://github.com/intersystems-community/pex-demo/blob/master/dotnet/Dockerfile


Containerising .Net/Java Gateways (or Kafka Integration Demo)
Published on InterSystems Developer Community (https://community.intersystems.com)

WORKDIR /source
COPY --from=store/intersystems/iris-
community:2020.2.0.211.0 $ISC_LIBDIR/*.nupkg $GWLIBDIR/

# copy csproj and restore as distinct layers
COPY *.csproj ./
RUN dotnet restore

# copy and publish app and libraries
COPY . .
RUN dotnet publish -c release -o /app

# final stage/image
FROM mcr.microsoft.com/dotnet/core/runtime:2.1
WORKDIR /app
COPY --from=build /app ./

# Configs to start the Gateway Server
RUN cp KafkaConsumer.runtimeconfig.json IRISGatewayCore21.runtimeconfig.json && \
    cp KafkaConsumer.deps.json IRISGatewayCore21.deps.json

ENV PORT 55556

CMD dotnet IRISGatewayCore21.dll $PORT 0.0.0.0

Let's go line by line:

FROM mcr.microsoft.com/dotnet/core/sdk:2.1 AS build

We use full .Net Core 2.1 SDK to build our app.

ENV ISC_PACKAGE_INSTALLDIR /usr/irissys
ENV GWLIBDIR lib
ENV ISC_LIBDIR ${ISC_PACKAGE_INSTALLDIR}/dev/dotnet/bin/Core21

WORKDIR /source
COPY --from=store/intersystems/iris-
community:2020.2.0.211.0 $ISC_LIBDIR/*.nupkg $GWLIBDIR/

Copy .Net Gateway NuGets from official InterSystems Docker image into our builder image

# copy csproj and restore as distinct layers
COPY *.csproj ./
RUN dotnet restore

# copy and publish app and libraries
COPY . .
RUN dotnet publish -c release -o /app

Build our library.

# final stage/image
FROM mcr.microsoft.com/dotnet/core/runtime:2.1
WORKDIR /app
COPY --from=build /app ./

Page 4 of 5



Containerising .Net/Java Gateways (or Kafka Integration Demo)
Published on InterSystems Developer Community (https://community.intersystems.com)

Copy library dlls into the final container we will actually run.

# Configs to start the Gateway Server
RUN cp KafkaConsumer.runtimeconfig.json IRISGatewayCore21.runtimeconfig.json && \
    cp KafkaConsumer.deps.json IRISGatewayCore21.deps.json

Currently, .Net Gateway must load all dependencies on startup, so we make it aware of all possible dependencies.

ENV PORT 55556

CMD dotnet IRISGatewayCore21.dll $PORT 0.0.0.0

Start gateway on port 55556 listening on all interfaces.

And we're done!

Here's a complete docker-compose to get it all running together (including Kafka and Kafka UI to see the
messages).

To run the demo you need:

1. Install:
docker
docker-compose
git

2. Execute:

git clone https://github.com/intersystems-community/pex-demo.git
cd pex-demo
docker-compose pull
docker-compose up -d

 

Important notice: Java Gateway and .Net Gateway libraries MUST come from the same version as InterSystems
IRIS client.

#.NET #Best Practices #Business Operation #Business Service #Docker #Interoperability #Java #InterSystems
IRIS
Check the related application on InterSystems Open Exchange
 
 

    Source
URL:https://community.intersystems.com/post/containerising-netjava-gateways-or-kafka-integration-demo 

Page 5 of 5

https://github.com/intersystems-community/pex-demo/blob/master/docker-compose.yml
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://community.intersystems.com/tags/net
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/business-operation
https://community.intersystems.com/tags/business-service
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/java
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/pex-demo
https://community.intersystems.com/post/containerising-netjava-gateways-or-kafka-integration-demo

