
Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Zhong Li · Sep 6, 2020 18m read
 Open Exchange

Deploy ML/DL models into a consolidated AI demo service stack
Keywords: IRIS, IntegratedML, Flask, FastAPI, Tensorflow Serving, HAProxy, Docker, Covid-19

Purpose:
We touched on some quick demos of deep learning and machine learning over the past few months, including a
simple Covid-19 X-Ray image classifier and a Covid-19 lab result classifier for possible ICU admissions. We also
touched on an IntegratedML demo implementation of the ICU classifier. While the "data science" hiking still goes
on, it might also be a good time to try some AI service deployment from the "data engineering" perspective - could
we wrap up everything we touched on so far into a set of service APIs? What are the common tools, components,
and infrastructure that we could leverage to achieve such a service stack in its simplest possible approach?

Scope

In scope:

As a jump start, we can simply use docker-compose to deploy the following dockerised components into an AWS
Ubuntu server

HAProxy - load balancer
Gunicorn vs. Univorn - web gateway servers
Flask vs. FastAPI - application servers for web app UI , service API definitions and Heatmap generations
etc
Tensorflow Model Serving vs. Tensorflow-GPU Model Serving - application backend servers for image etc
classifications etc
IRIS IntegratedML - consolidated App+DB AutoML with SQL interface
Python3 in Jupyter Notebook to emulate a client for benchmarking
 Docker and docker-compose
AWS Ubuntu 16.04 with a Tesla T4 GPU

Note: Tensorflow Serving with GPU is for demo purpose only - you can simply switch off the gpu related image (in
a dockerfile) and the config (in the docker-compose.yml).

Out of scope or on next wish list:

Nginx or Apache etc web servers are omitted in demo for now
RabbitMQ and Redis - queue broker for reliable messaging that can be replaced by IRIS or Ensemble.
IAM (Intersystems API Manger) or Kong is on wish list
SAM (Intersystems System Alert & Monitoring)
ICM (Intersystems Cloud Manager) with Kubernetes Operator - always one of my favorites since its birth
FHIR (Intesystems IRIS based FHIR R4 server and FHIR Sandbox for SMART on FHIR apps)
CI/CD devop tools or Github Actions

A "Machine Learning Engineer" would inevitably put hands all over these components to provision some production

Page 1 of 14

https://community.intersystems.com/user/zhong-li-0
https://openexchange.intersystems.com/package/covid-ai-demo-deployment
https://openexchange.intersystems.com/package/covid-ai-demo-deployment
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AIAM
https://docs.intersystems.com/sam/csp/docbook/DocBook.UI.Page.cls?KEY=ASAM
https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=PAGE_DEPLOYMENT_ICM

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

environments along service life-cycles anyway. We can scope more in over the time.

Github repository
The full source code is at: https://github.com/zhongli1990/covid-ai-demo-deployment

Also the integratedML-demo-template repository is reused together with the new repository.

Deployment Pattern
Below shows the logical deployment pattern for this "AI demo in Dockers" testing framework.

Page 2 of 14

https://github.com/zhongli1990/covid-ai-demo-deployment
https://github.com/intersystems-community/integratedml-demo-template

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

For demo purpose I deliberately created 2 separate stacks for deep learning classification as well as web
rendering, then used a HAProxy as a soft load balancer to distribute the incoming API requests across these 2
stacks in a stateless way.

Guniorn + Flask + Tensorflow Serving
Univcorn + FaskAPI + Tensorflow Serving GPU

Page 3 of 14

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

IRIS with IntegratedML is used for machine learning demo samples as i.e. in the previous post of ICU prediction.

I omitted some common components in current demo that would be needed or considered for production services:

Web servers: Nginx or Apache etc. They would be needed between HAProxy and Gunicorn/Uvicorn, for
proper HTTP session handling i.e. avoid DoS attacks etc.
Queue manager and DBs: RabbitMQ and/or Redis etc, between Flask/FastAPI and backend serving, for
reliable Async serving and data/config persistence etc.
API Gateway: IAM or Kong clusters, between HAProxy load-balancer and web server for API management
without creating a sing-point-of-failure.
Monitoring & Alert: SAM would be nice.
Provisioning for CI/CD devops: ICM with K8s would be needed for cloud neutral deployment &
management, and for CI/CD with other common devops tools.

Actually, IRIS itself can certainly be used as enterprise grade queue manager as well as a high-performing
database for reliable messaging. In the pattern analysis it becomes apparent IRIS can be in place of
RabbitMQ/Redis/MongoDBs etc queue brokers and databases, so it would be better consolidated with much less
latency and better throughout performance. And even more, IRIS Web Gateway (previously CSP Gateway)
can certainly be positioned in place of Gunicorn or Unicorn etc, right?

Environment Topology
There are a few common options to implement the above logical pattern in all-Docker components. On top of our
heads would be:

docker-compose
docker swarm etc
Kubernetes etc
ICM with K8s Operation

This demo starts with "docker-compose" for functional PoC and some benchmarking. Certainly we'd love to use
K8s and possibly with ICM too over the time.

As described in its docker-compose.yml file, a physical implementation of its environment topology on an AWS
Ubuntu server would end up something like this:

Page 4 of 14

https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/docker-compose.yml

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

The above diagram shows how those service ports of all Docker instances are mapped and exposed directly on the
Ubuntu server for demo purpose. In production it should be all security hardened. And for pure demo purpose, all
containers are connected into the same Docker network; while in production it would be separated as external
routable vs internal non-routable.

Dockerised Components
Below shows how those storage volumes in host machine are mounted to each container instance as specified in
this docker-compose.yml file:

ubuntu@ip-172-31-35-104:/zhong/flask-xray$ tree ./ -L 2

./
??? covid19 (Flask+Gunicorn container and
Tensorflow Serving container will mount here)
? ???
 app.py (Flask main app
: Both web application and API service interfaces are defined and implemented here)
? ??? covid19_models (Tensorflow models
 are published and version
ed here for image classification Tensorflow Serving container with CPU)
? ??? Dockerfile (Flask server with Gunicorn:
CMD ["gunicorn", "app:app", "--bind", "0.0.0.0:5000", "--workers", "4", "--threads",
"2"])
? ???

Page 5 of 14

https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/docker-compose.yml
mailto:ubuntu@ip

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

 models (Models in .h5 format for Flask app and API dem
o of heatmap generation by grad-cam on X-Rays)
? ??? __pycache__
? ??? README.md
? ???
 requirements.txt (Python packages needed for the full Flask+Gunicorn app
s)
? ??? scripts
? ??? static (Web static files)
? ??? templates (Web rendering templates)
? ??? tensorflow_serving (Config file for tensorflow serving service)
? ??? test_images
??? covid-fastapi (FastAPI+Uvicorn container and
Tensorflow Serving with GPU container will mount here)
? ??? covid19_models (
Tensorflow serving GPU models
 are published and versioned here for image classification)
? ??? Dockerfile (Uvicorn+FastAPI
 server are started here:

)
? ??? main.py (FastAPI app
: both web application and API service interfaces are defined and implemented here)
? ???
 models (Models in .h5 format for FastAPI app and API demo
 of heatmap generation by grad-cam on X-Rays)
? ??? __pycache__
? ??? README.md
? ??? requirements.txt
? ??? scripts
? ??? static
? ??? templates
? ??? tensorflow_serving
? ??? test_images
??? docker-
compose.yml (Full stack Do
cker definition file. Version 2.3
 is used to accommodate Docker GPU "nvidia runtime", otherwise can be version 3.x)
??? haproxy (HAProxy
docker service is defined here. Note: sticky session can be defined for backend LB.
)
? ??? Dockerfile
? ??? haproxy.cfg
??? notebooks (Jupyter Notebook
container service with Tensorflow 2.2 and Tensorboard etc)
 ??? Dockerfile
 ???
 notebooks (Sa
mple notebook files to
emulate external API Client apps for functional tests and
API benchmark tests in Python on the load balancer etc)
??? requirements.txt

Note: the above docker-compose.yml is for deep learning demo of Convid X-Rays. It is used together with another
integratedML-demo-template's docker-compose.yml to form the full service stack as displayed in the environment
topology.

Page 6 of 14

https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/docker-compose.yml
https://github.com/intersystems-community/integratedml-demo-template
https://github.com/intersystems-community/integratedml-demo-template/blob/master/docker-compose.yml

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

Service Start-ups
A simple docker-compose up -d would start up all container services:

ubuntu@ip-172-31-35-104:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
31b682b6961d iris-aa-server:2020.3AA "/iris-main" 7 weeks ago Up 2 days (healthy)
2188/tcp, 53773/tcp, 54773/tcp, 0.0.0.0:8091->51773/tcp, 0.0.0.0:8092->52773/tcp iml-template-
master_irisimlsvr_1
6a0f22ad3ffc haproxy:0.0.1 "/docker-entrypoint.…" 8 weeks ago Up 2 days
0.0.0.0:8088->8088/tcp flask-xray_lb_1
71b5163d8960 ai-service-fastapi:0.2.0 "uvicorn main:app --…" 8 weeks ago Up 2 days
0.0.0.0:8056->8000/tcp flask-xray_fastapi_1
400e1d6c0f69 tensorflow/serving:latest-gpu "/usr/bin/tf_serving…" 8 weeks ago Up 2 days
0.0.0.0:8520->8500/tcp, 0.0.0.0:8521->8501/tcp flask-xray_tf2svg2_1
eaac88e9b1a7 ai-service-flask:0.1.0 "gunicorn app:app --…" 8 weeks ago Up 2 days
0.0.0.0:8051->5000/tcp flask-xray_flask_1
e07ccd30a32b tensorflow/serving "/usr/bin/tf_serving…" 8 weeks ago Up 2 days
0.0.0.0:8510->8500/tcp, 0.0.0.0:8511->8501/tcp flask-xray_tf2svg1_1
390dc13023f2 tf2-jupyter:0.1.0 "/bin/sh -c '/bin/ba…" 8 weeks ago Up 2 days
0.0.0.0:8506->6006/tcp, 0.0.0.0:8586->8888/tcp flask-xray_tf2jpt_1
88e8709404ac tf2-jupyter-jdbc:1.0.0-iml-template "/bin/sh -c '/bin/ba…" 2 months ago Up 2 days
0.0.0.0:6026->6006/tcp, 0.0.0.0:8896->8888/tcp iml-template-master_tf2jupyter_1

docker-compose up --scale fastapi=2 --scale flask=2 -d for example will horizontally scale up to 2x Gunicorn+Flask
containers and 2x Univcorn+FastAPI containers:

ubuntu@ip-172-31-35-104:/zhong/flask-xray$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
dbee3c20ea95 ai-service-fastapi:0.2.0 "uvicorn main:app --…" 4 minutes ago Up 4 minutes 0.0.0.0:8057->8000/tcp
flask-xray_fastapi_2
95bcd8535aa6 ai-service-flask:0.1.0 "gunicorn app:app --…" 4 minutes ago Up 4 minutes 0.0.0.0:8052->5000/tcp
flask-xray_flask_2

... ...

Running another "docker-compose up -d" in the "integrtedML-demo-template"'s working directory has brought up
the irisimlsvr and tf2jupyter container in the above list.

Tests

1. AI demo web app with a simple UI

After starting up the above docker services, we can visit a demo web application for X-Ray Covid-19 lung detection
hosted in an AWS EC2 instance at a temp address
at http://ec2-18-134-16-118.eu-west-2.compute.amazonaws.com:8056/

Here below is a couple of screens captured from my mobile. It has a very simple demo UI: basically I just click
"Choose File" then "Submit" button to upload an X-Ray image, then the app will show a classification report. If it is
classified as Covid-19 X-Ray, an heatmap will be shown to emulate the "detected" lesion area via DL; and if not,
the classification report will only show the upload X-Ray image.

Page 7 of 14

mailto:ubuntu@ip
mailto:ubuntu@ip
https://community.intersystems.com/post/run-some-covid-19-lung-x-ray-classification-and-ct-detection-demos
http://ec2-18-134-16-118.eu-west-2.compute.amazonaws.com:8056/
https://github.com/zhongli1990/Covid19-X-Rays/tree/master/all/test
https://community.intersystems.com/post/explainability-and-visibility-covid-19-x-ray-classifiers-deep-learning

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 8 of 14

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

The web app is a Python server page whose logic are mainly coded in FastAPI's main.py file, as well as in Flask's
app.py file.

When having a bit more spare time I may document in detail the coding & convention differences between Flask
and FastAPI. Actually I hope I could do a Flask vs. FastAPI vs. IRIS for AI demo hosting.

2. Test demo APIs

FastAPI (expose at port 8056) has built in Swagger API docs, as shown below. This is very handy. All I need to do
is to use "/docs" in its URL, for example:

I built in a few place holders (such as /hello and /items) and some real demo API interfaces (such as /healthcheck,
/predict, and predict/heatmap).

Page 9 of 14

https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/covid-fastapi/main.py
https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/covid19/app.py
https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/covid19/app.py

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's have a quick test on these APIs, by running a few Python lines (as an API Client App emulator) in one of the
Jupyter Notebook samples files I scratched up for this AI demo service.

Below I am running this file for
example: https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/notebooks/notebooks/Covid19-3cl
ass-Heatmap-Flask-FastAPI-TF-serving-all-in-one-HAProxy2.ipynb

First to test backend TF-Serving (port 8511) and TF-Serving-GPU (port 8521) are up and functioning:

!curl http://172.17.0.1:8511/v1/models/covid19 # tensorflow serving
!curl http://172.17.0.1:8521/v1/models/covid19 # tensorflow-gpu serving

{
 "model_version_status": [
 {
 "version": "2",
 "state": "AVAILABLE",
 "status": {
 "error_code": "OK",
 "error_message": ""
 }
 }
]
}
{
 "model_version_status": [
 {
 "version": "2",
 "state": "AVAILABLE",
 "status": {
 "error_code": "OK",
 "error_message": ""
 }
 }
]
}

Then test the following service APIs are up & running:

Gunicorn+Flask+TF-Serving
Unicorn+FastAPI+TF-Serving-GPU
Load balancer HAProxy in front of bother services above

r = requests.get('http://172.17.0.1:8051/covid19/api/v1/healthcheck') # tf srving do
cker with cpu
print(r.status_code, r.text)
r = requests.get('http://172.17.0.1:8056/covid19/api/v1/healthcheck') # tf-
serving docker with gpu
print(r.status_code, r.text)
r = requests.get('http://172.17.0.1:8088/covid19/api/v1/healthcheck') # tf-
serving docker with HAproxy

Page 10 of 14

https://github.com/zhongli1990/covid-ai-demo-deployment/tree/master/notebooks/notebooks
https://github.com/zhongli1990/covid-ai-demo-deployment/tree/master/notebooks/notebooks
https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/notebooks/notebooks/Covid19-3class-Heatmap-Flask-FastAPI-TF-serving-all-in-one-HAProxy2.ipynb
https://github.com/zhongli1990/covid-ai-demo-deployment/blob/master/notebooks/notebooks/Covid19-3class-Heatmap-Flask-FastAPI-TF-serving-all-in-one-HAProxy2.ipynb

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

print(r.status_code, r.text)

And expected results would be:

200 Covid19 detector API is live!
200 "Covid19 detector API is live!\n\n"
200 "Covid19 detector API is live!\n\n"

Test some functional API interface, such as /predict/heatmap to return the classification and heatmap result of an
input X-Ray image. The inbound image is based64 encoded before sending in via HTTP POST per API definitions:

%%time

importing the requests library
import argparse
import base64

import requests

defining the api-endpoint
API_ENDPOINT = "http://172.17.0.1:8051/covid19/api/v1/predict/heatmap"

image_path = './Covid_M/all/test/covid/nejmoa2001191_f3-PA.jpeg'
#image_path = './Covid_M/all/test/normal/NORMAL2-IM-1400-0001.jpeg'
#image_path = './Covid_M/all/test/pneumonia_bac/person1940_bacteria_4859.jpeg'
b64_image = ""
Encoding the JPG,PNG,etc. image to base64 format
with open(image_path, "rb") as imageFile:
 b64_image = base64.b64encode(imageFile.read())

data to be sent to api
data = {'b64': b64_image}

sending post request and saving response as response object
r = requests.post(url=API_ENDPOINT, data=data)

print(r.status_code, r.text)

extracting the response

Page 11 of 14

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

print("{}".format(r.text))

All such test images had also been uploaded into GitHub. The result of above code will be:

200 {"Input_Image":"http://localhost:8051/static/source/0198f0ae-85a0-470b-bc31-dc191
8c15b9620200906-170443.png","Output_Heatmap":"http://localhost:8051/static/result/Cov
id19_98_0198f0ae-85a0-470b-bc31-dc1918c15b9620200906-170443.png.png","X-Ray_Classfica
tion_Raw_Result":[[0.805902302,0.15601939,0.038078323]],"X-Ray_Classification_Covid19
_Probability":0.98,"X-Ray_Classification_Result":"Covid-19 POSITIVE","model_name":"Cu
stomised Incpetion V3"}

{"Input_Image":"http://localhost:8051/static/source/0198f0ae-85a0-470b-bc31-dc1918c15
b9620200906-170443.png","Output_Heatmap":"http://localhost:8051/static/result/Covid19
_98_0198f0ae-85a0-470b-bc31-dc1918c15b9620200906-170443.png.png","X-Ray_Classfication
_Raw_Result":[[0.805902302,0.15601939,0.038078323]],"X-Ray_Classification_Covid19_Pro
bability":0.98,"X-Ray_Classification_Result":"Covid-19 POSITIVE","model_name":"Custom
ised Incpetion V3"}

CPU times: user 16 ms, sys: 0 ns, total: 16 ms
Wall time: 946 ms

3. Benchmark-test demo service APIs

We set up a HAProxy load balancer instance. We also started a Flask service with 4x workers, and a FastAPI
service with 4x workers too.

Why don't we create i.e. 8x Pyhon processes directly in the Notebook file, to emulate 8x concurrent API clients
sending requests into the demo service APIs, to see what happens

#from concurrent.futures import ThreadPoolExecutor as PoolExecutor
from concurrent.futures import ProcessPoolExecutor as PoolExecutor
import http.client
import socket
import time

start = time.time()

#laodbalancer:
API_ENDPOINT_LB = "http://172.17.0.1:8088/covid19/api/v1/predict/heatmap"
API_ENDPOINT_FLASK = "http://172.17.0.1:8052/covid19/api/v1/predict/heatmap"
API_ENDPOINT_FastAPI = "http://172.17.0.1:8057/covid19/api/v1/predict/heatmap"
def get_it(url):
 try:
 # loop over the images
 for imagePathTest in imagePathsTest:
 b64_image = ""
 with open(imagePathTest, "rb") as imageFile:
 b64_image = base64.b64encode(imageFile.read())

Page 12 of 14

https://github.com/zhongli1990/Covid19-X-Rays/tree/master/all/test

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

 data = {'b64': b64_image}
 r = requests.post(url, data=data)
 #print(imagePathTest, r.status_code, r.text)
 return r
 except socket.timeout:
 # in a real world scenario you would probably do stuff if the
 # socket goes into timeout
 pass

urls = [API_ENDPOINT_LB, API_ENDPOINT_LB,
 API_ENDPOINT_LB, API_ENDPOINT_LB,
 API_ENDPOINT_LB, API_ENDPOINT_LB,
 API_ENDPOINT_LB, API_ENDPOINT_LB]

with PoolExecutor(max_workers=16) as executor:
 for _ in executor.map(get_it, urls):
 pass

print("--- %s seconds ---" % (time.time() - start))

So it took 74s to process 8x27 = 216 test images. This load balanced demo stack was able to process 3
images per second(by returning classification and heatmap results to clients):

--- 74.37691688537598 seconds ---

From the Putty session's Top command, we can see 8x server processes (4x gunicorn + 4 unicorn/python) started
to ramp up as soon as the above benchmark scripts started running

Page 13 of 14

Deploy ML/DL models into a consolidated AI demo service stack
Published on InterSystems Developer Community (https://community.intersystems.com)

Next
This post is just a starting point to put together an "All-in-Docker AI demo" deployment stack as a testing
framework. Next I hope to add in more API demo interfaces such as the Covid-19 ICU prediction interface ideally
per FHIR R4 etc, and add in some support DICOM input format. This could also be a test bench to explore more
closer integration with IRIS hosted ML capabilities. Over the time it can be used as a testing framework (and a
pretty simple one) to intercept more and more ML or DL specialty models as we hike on various AI fronts including
medical imaging, population health or personalised prediction, and NLP etc etc. I also listed a wish list at the very
end of the previous post (in its "Next" section).

#Artificial Intelligence (AI) #Containerization #Continuous Delivery #Continuous Integration #IntegratedML
#Machine Learning (ML) #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/deploy-mldl-models-consolidated-ai-demo-service-stack

Page 14 of 14

https://community.intersystems.com/post/run-some-covid-19-icu-predictions-ml-vs-integratedml-part-ii
https://community.intersystems.com/tags/artificial-intelligence-ai
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/continuous-delivery
https://community.intersystems.com/tags/continuous-integration
https://community.intersystems.com/tags/integratedml
https://community.intersystems.com/tags/machine-learning-ml
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/covid-ai-demo-deployment
https://community.intersystems.com/post/deploy-mldl-models-consolidated-ai-demo-service-stack

