Tips for debugging with %Status
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Timothy Leavitt - Juis, 2020 717y read

Tips for debugging with %Status

Introduction

If you're solving complex problems in ObjectScript, you probably have a lot of code that works with %Status values.
If you have interacted with persistent classes from an object perspective (%Save, %0Openld, etc.), you have almost
certainly seen them. A %Status provides a wrapper around a localizable error message in InterSystems' platforms.
An OK status ($$$0K) is just equal to 1, whereas a bad status ($$$SERROR(errorcode,arguments...)) is
represented as a O followed by a space followed by a $ListBuild list with structured information about the error.
$System.Status (see class reference) provides several handy APIs for working with %Status values; the class
reference is helpful and | won't bother duplicating it here. There have been a few other useful articles/questions on
the topic as well (see links at the end). My focus in this article will be on a few debugging tricks techniques rather
than coding best practices (again, if you're looking for those, see links at the end).

Motivating Code Example
Note - don't ever write code like this! Always check your statuses and return them / throw them as exceptions (e.qg.

$$$ThrowStatus(someErrorStatus)) and it'll make debugging WAY easier.

Cl ass DC. Denp. MaskedErr or St at us Ext ends %Per si st ent
{

Property Answer As %l nylnt;

Cl assMet hod Run() As %St atus

{
Set instance = ..%\New)
Set instance. Answer = 9000
Do i nstance. %Gave()
Set instance = ..%enld(1,,.sc)
Set instance. Answer = 42
Do i nstance. %save()
Qit $3XK
}
}

When run from terminal, an exception is thrown; something clearly went wrong.

USER>d ##cl ass(DC. Denp. MaskedError St at us) . Run()

Set instance. Answer = 42
N

<| NVALI D OREF>zRun+5"DC. Denp. MaskedError St at us. 1

Page 1 of 4

https://community.intersystems.com/user/timothy-leavitt
https://docs.intersystems.com/irislatest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Status

Tips for debugging with %Status
Published on InterSystems Developer Community (https://community.intersystems.com)

%Status debugging trick #1: $System.OBJ.DisplayError()

You can always Do $System.OBJ.DisplayError() to print out the last error status that was created. This works
because any time an error status is created (e.g., via $System.Status.Error), the variable %obijlasterror is set to that
status. You can also zwrite %objlasterror (equivalently). In the case from above:

USER 2d1>d $system OBJ. Di spl ayError ()
ERROR #5809: (bject to Load not found, class 'DC. Deno. MaskedErrorStatus', ID "1

%Status debugging trick #2: Stack traces

Inside every %Status is a stack trace for where the error was created. You can see this by zwriting the status:

USER 2d1>zw %obj | asterror %objlasterror="0 "_$I b($l b(5809, "DC. Denp. MaskedEr r or St at us"
1Y, ..., 8 b(, "USER', $I b("e”% oadDat a+18"DC. Deno. MaskedErr or St at us. 101", " e*%pen+16
N4 brary. Persistent. 171", "e % penl d+1"%.i brary. Persi stent. 171", "e*zRun+4”DC. Deno. Mas
kedError St atus. 171", "d*~0"))))/* ERROR #5809: Object to Load not found, class 'DC De
no. MaskedError Status', ID'1" */

Want to see the stack trace in the more user-friendly error text for every status (e.g.,
using $System.OBJ.DisplayError() or $System.Status.GetErrorText(someStatus))? You can do that by setting
"%oddENV ("callererrorinfo”,$namespace)=1 or 2. You can see the effect here:

USER>set "%ddENV("cal |l ererrorinfo", $nanespace) =1

USER>d $system OBJ. Di spl ayError ()

ERROR #5809: (bject to Load not found, class 'DC Deno. MaskedErrorStatus', ID'1" [%o0
adDat a+18"DC. Denp. MaskedEr r or St at us. 1: USER]

USER>set "% ddENV("cal |l ererrorinfo", $nanespace) =2

USER>d $system OBJ. Di spl ayError ()

ERRCR #5809: Object to Load not found, class 'DC. Deno. MaskedErrorStatus', ID"'1 [e*%
LoadDat a+18”DC. Deno. MaskedError St at us. 1*1 e % pen+16"%.i brary. Persi stent. 101 e*%penl

d+1"79%.i brary. Persi stent. 11 e”*zRun+4~DC. Deno. MaskedErr or St at us. 101 d*"0: USER]

USER>k "%ddENV("cal |l ererrorinfo", $nanespace)

USER>d $system OBJ. Di spl ayError ()

ERROR #5809: (bject to Load not found, class 'DC Deno. MaskedErrorStatus', ID"'1'

Note that this is really only appropriate in a development environment - you don't want your users to see the
internals of your code. (Really, it's best to avoid showing %Status values to users directly, in favor of more user-
friendly application-specific error messages, but that's a topic for another day.)

%Status debugging trick #3: Fancy zbreak

Here's where it gets tricky - in the case of this code snippet, the root cause is an unchecked %Status from %Save()
earlier in the code snippet. It's easy to imagine a much more complicated example where finding what went wrong
is just really hard, especially if it's an error occurring somewhere further down in platform code. My preferred
method for dealing with this - short of jumping into an interactive debugger - is to use a really fancy zbreak
command in terminal:

USER>zbr eak *%pobjlasterror:"N':"$d(%bjl asterror)#2":"set ~ntenptl ($i (*ntenptl))=%0bj
| asterror”

Page 2 of 4

https://cedocs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=TCOS_ZBreak

Tips for debugging with %Status
Published on InterSystems Developer Community (https://community.intersystems.com)

...what does that mean?

zbreak <any time %obijlasterror changes>:<don't do anything in the debugger itself>:<as long as %obijlasterror is
defined and has a value (e.g., it didn't go from being defined to being undefined)>:<run code to set the next
subscript of an integer-subscripted global that isn't journalled (because it starts with mtemp, in case we're in a
transaction when the %Status is created and it's been rolled back by the time we're looking at the log; also, with my
initials as part of the global so if someone finds it in committed code or a bloated database they know to yell at me)
to the error status>

Side note on zbreak: you can see currently defined breakpoints/watchpoints by running 'zbreak’' with no arguments,
and you can/should turn these breakpoints off when you're done with them by running break "off" - e.g.:

USER>zbr eak
BREAK:
No breakpoints
%bjlasterror F:E S:0 C "$d(%bjl asterror)#2" E: "set “ntenptl ($i ("ntenptl))=%bjl aste
rror"
USER>br eak "of f"
USER>zbr eak
BREAK:
No breakpoints
No wat chpoi nts

So, what happens when the problematic method is run with the watchpoint set?

USER>zbr eak *%pobjlasterror:"N':"$d(%bjl asterror)#2":"set ~ntenptl ($i (*ntenptl))=%0bj
| asterror”

USER>d ##cl ass(DC. Deno. MaskedEr ror St at us) . Run()

Set instance. Answer = 42
N

<| NVALI D OREF>zRun+5"DC. Denp. MaskedError St atus. 1

USER 2d1>zw ~nt enpt |
Ant enpt | =6
Amtenpt! (1)="0 "_$I b($l b(7203, 9000, 127,,,,,,, $l b(, "USER', $| b("e”zAnswer | sVal i d+1"DC. D
eno. MaskedError St at us. 171", "e”%/al i dat eQbj ect +37DC. Deno. MaskedEr r or St at us. 174", " e %5e
rializeObject+3"%.i brary. Persistent. 171", "er"%Bave+4"%.i brary. Persi stent. 172", "d*zRun+
37DC. Denp. MaskedErr or St at us. 171", "d**0"))))/* ERROR #7203: Datatype val ue '9000' gre
ater than MAXVAL al |l owed of 127 */
mtenptl (2)="0 "_$I b($! b(7203, 9000, 127,,,,,,, %l b(,"USER', $l b("e~zAnswer| sVal i d+1"DC. D
eno. MaskedError St atus. 171", "e”%/al i dat ebj ect +37DC. Denp. MaskedEr r or St at us. 174", " e %Ge
rializeObject+3"%.i brary. Persistent. 171", "e*"%Bave+4"%.i brary. Persi stent. 172", "d*zRun+
3"DC. Deno. MaskedError St at us. 171", "d**"0")), "0 " _$I b($l b(5802, " DC. Deno. MaskedEr r or St at
us: Answer ", 9000, ,,,,,, $l b(, "USER", $l b("e”EnbedErr +1"%0ccSystemt1"))))))/* ERROR #7203
Dat at ype val ue '9000' greater than MAXVAL al |l owed of 127- > ERROR #5802: Dat atype
validation failed on property ' DC Deno. MaskedError Status: Answer', with value equal t
o "9000" */
Amtenptl (3)="0 "_$I b($l b(7203, 9000, 127,,,,,,, $l b("zAnswer | sVal i d+1"DC. Denpo. MaskedErr o
rStatus. 1", "USER", $l b("e”zAnswer | sVal i d+1~DC. Denp. MaskedErr or St at us. 171", "e”"%/al i dat e
bj ect +37DC. Denp. MaskedError St at us. 104", "e"%Beri al i zeChj ect +37%.i brary. Persi stent. 1"1
", "erUsave+4Ni brary. Persi stent. 172", "d*zRun+3~DC. Deno. MaskedErr or St at us. 171", "d*A0
"))))/* ERROR #7203: Datatype val ue '9000' greater than MAXVAL all owed of 127 */
Amtenpt! (4)="0 "_$I b($l b(5802, "DC. Deno. MaskedEr r or St at us: Answer ", 9000, ,,,,,, $l b("Enbe
dErr +1"%poccSyst ent', " USER', $I b(" e EnbedEr r +1"%ccSystem*1"))))/* ERROR #5802: Dat atype
validation failed on property 'DC Deno. MaskedError Status: Answer', with value equal t

Page 3 of 4

Tips for debugging with %Status
Published on InterSystems Developer Community (https://community.intersystems.com)

o "9000" */
Amtenpt! (5)="0 "_$I b($l b(7203, 9000, 127, ,,,,,, $l b("zAnswer| sVal i d+1"DC. Denp. MaskedErr o
rStatus. 1", "USER', $I b("e*zAnswer | sVal i d+1~DC. Denp. MaskedErr or St at us. 1*1", "e”%W/al i dat e
oj ect +37DC. Denp. MaskedError St at us. 104", "e"%Ber i al i zeCbj ect +37%.i brary. Persi stent. 1"1
", "eNUsave+4ni brary. Persi stent. 172", "d*zRun+3~DC. Deno. MaskedErr or St at us. 171", "d*AA0
")),"0 " _$I b($l b(5802, "DC. Denp. MaskedEr r or St at us: Answer ", 9000, ,,,,,, $l b("EnbedErr+17%
occSystent', "USER', $I b("e”EnbedErr +1"%ccSystem*1"))))))/* ERROR #7203: Datatype val ue
' 9000' greater than MAXVAL all owed of 127- > ERROR #5802: Datatype validation fail
ed on property 'DC. Deno. MaskedError Stat us: Answer', with value equal to "9000" */
Amtenptl (6)="0 "_$I b($l b(5809, "DC. Denp. MaskedError Status","1",,,,,,,$l b(, "USER', $I b("
e"% oadDat a+18"DC. Denn. MaskedErr or St at us. 1*1", "e % pen+167%.i brary. Persi stent. 1*"1","e
Nogpenl d+17%.i brary. Persi stent. 1"1", "e”zRun+4"~DC. Deno. MaskedEr r or St at us. 1*1", "d**"0")
)))/* ERROR #5809: (bject to Load not found, class 'DC Deno. MaskedErrorStatus', ID"'1
Cxyg

There's a bit of noise in there, but the key problem pops right out:
/* ERROR #7203: Datatype value '9000' greater than MAXVAL allowed of 127 */

Should've known better than to use %TinyInt! (And, more importantly, you should always check %Status values
returned by methods you call.)

Related Reading

My preferred coding patterns for error handling and reporting
%Status vs Other Return Values in Caché ObijectScript Methods

About %objlasterror
How to set envCallerErrorinfoGet

ObjectScript error handling snippets
ZBREAK command

#Best Practices #Error Handling #ObjectScript #Caché #Ensemble #InterSystems IRIS #InterSystems IRIS for
Health

Source URL:https://community.intersystems.com/post/tips-debugging-status

Page 4 of 4

https://community.intersystems.com/post/try-catch-block-i-usually-use-intersystems-objectscript#comment-7751
https://community.intersystems.com/post/status-vs-other-return-values-cach%C3%A9-objectscript-methods
https://community.intersystems.com/post/about-objlasterror
https://community.intersystems.com/post/how-set-envcallererrorinfoget-windows-get-location-information-within-exception#comment-95586
https://community.intersystems.com/post/objectscript-error-handling-snippets
https://cedocs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=TCOS_ZBreak
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/error-handling
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health
https://community.intersystems.com/tags/intersystems-iris-health
https://community.intersystems.com/post/tips-debugging-status

