AppS.REST - a new REST framework for InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Timothy Leavitt - un4,2020 31y read

Open Exchange

AppS.REST - a new REST framework for InterSystems IRIS

Over the past year or so, my team (Application Services at InterSystems - tasked with building and maintaining
many of our internal applications, and providing tools and best practices for other departmental applications) has
embarked on a journey toward building Angular/REST-based user interfaces to existing applications originally built
using CSP and/or Zen. This has presented an interesting challenge that may be familiar to many of you - building
out new REST APIs to existing data models and business logic.

As part of this process, we've built a new framework for REST APIs, which has been too useful to keep to
ourselves. It is now available on the Open Exchange

at https://openexchange.intersystems.com/package/apps-rest. Expect to see a few more articles about this over
the coming weeks/months, but in the meanwhile, there are good tutorials in the project documentation on GitHub
(https://github.com/intersystems/apps-rest).

As an introduction, here are some of our design goals and intentions. Not all of these have been realized yet, but
we're well on the way!

Rapid Development and Deployment

Our REST approach should provide the same quick start to application development that Zen does, solving the
common problems while providing flexibility for application-specific specialized use cases.

* Exposing a new resource for REST access should be just as easy as exposing it a a Zen DataModel.

¢ Addition/modification of REST resources should involve changes at the level being accessed.

* Exposure of a persistent class over REST should be accomplished by inheritance and minimal overrides,
but there should also be support for hand-coding equivalent functionality. (This is similar to
%ZEN.DataModel.Adaptor and %ZEN.DataModel.ObjectDataModel.)

* Common patterns around error handling/reporting, serialization/deserialization, validation, etc. should not
need to be reimplemented for each resource in each application.

¢ Support for SQL querying, filtering, and ordering, as well as advanced search capabilities and pagination,
should be built-in, rather than reimplemented for each application.

¢ |t should be easy to build REST APIs to existing APl/library classmethods and class queries, as well as at
the object level (CRUD).

Security

Security is an affirmative decision at design/implementation time rather than an afterthought.

* When REST capabilities are gained by class inheritance, the default behavior should be to provide NO
access to the resource until the developer actively specifies who should receive access and under what
conditions.

¢ Standardized implementations of SQL-related features minimize the surface for SQL injection attacks.

¢ Design should take into consideration the OWASP API Top 10
(see: https://owasp.org/www-project-api-security)

Sustainability

Page 1 of 2

https://community.intersystems.com/user/timothy-leavitt
https://openexchange.intersystems.com/package/apps-rest
https://openexchange.intersystems.com/package/apps-rest
https://openexchange.intersystems.com/package/apps-rest
https://github.com/intersystems/apps-rest
https://owasp.org/www-project-api-security/

AppS.REST - a new REST framework for InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Uniformity of application design is a powerful tool for an enterprise application ecosystem.

¢ Rather than accumulating a set of diverse hand-coded REST APIs and implementations, we should have
similar-looking REST APIs throughout our portfolio. This uniformity should lead to:
o Common debugging techniques
o Common testing techniques
o Common Ul techniques for connecting to REST APIs
o Ease of developing composite applications accessing multiple APIs
* The set of endpoints and format of object representations provided/accepted over REST should be well-
defined, such that we can automatically generate APl documentation (e.g., Swagger/OpenAPI) based on
these endpoints.
* Based on industry-standard APl documentation, we should be able to generate portions of client code (e.qg.,
typescript classes corresponding to our REST representations) using third-party/industry-standard tools.

#AP| #Best Practices #Data Model #Framework #ISON #REST API| #Security #InterSystems IRIS #InterSystems
IRIS for Health #0pen Exchange

Check the related application on InterSystems Open Exchange

Source URL:https://community.intersystems.com/post/appsrest-new-rest-framework-intersystems-iris

Page 2 of 2

https://community.intersystems.com/tags/api
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/data-model
https://community.intersystems.com/tags/framework
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health
https://community.intersystems.com/tags/intersystems-iris-health
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/apps-rest
https://community.intersystems.com/post/appsrest-new-rest-framework-intersystems-iris

