
A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Tani Frankel · Jun 4, 2020 10m read

A Hidden Object Design Consideration “Journal Killer” [... And an even
more secret Business Process Parameter]

In this article I'd like to share with you a phenomena that is best you avoid - something you should be aware of
when designing your data model (or building your Business Processes) in Caché or in Ensemble (or older
HealthShare Health Connect Ensemble-based versions).

Background
As a reminder, every (well… almost every) SET and KILL you perform of a global to the database (directly or via
some interface like an object %Save() or SQL DDL) gets written to the database Journal.

[You can see this article with more background about this]

In this article I’d like to highlight a consideration that could cause you (might even already been causing you)
serious journaling consumption.

I’ll give you a little background of how I got on to this topic (and this could also illustrate the results of this
phenomena).

A customer was complaining of extreme journal growth.

We examined the journal usage, here’s a certain visualization of “regular days” journal consumption at this
customer ‒

Each “dot” signifies a 1GB-sized journal file switch.

And this is what the “bad days” looked like ‒

Page 1 of 9

https://community.intersystems.com/user/tani-frankel
https://community.intersystems.com/post/my-growing-journals-how-do-i-minimize

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

You can see the “lines” of “connected dots” that signify consecutive heavy journal consumption.

Looking closer (see this article with tips of how to analyze the Journal) we learned the reason for this was the
phenomena described below.

Example
The scenario in which this happens is when you have an object with an Array Collection (or some other “Collection”
that “behaves” like an Array storage-wise).

Each time, you save the object, regardless of how many items in the collection you changed (or even if you
changed them at), the code behind the scenes KILLs the whole Collection global subscript node, and re-SETs.

For example, assume you have the following class ‒

Class Demo.Data.Test Extends %Persistent
{
/// test type
Property TypeCode As %String;
/// related runs
Property RelatedRuns As array Of %String;
Storage Default
{
<Data name="RelatedRuns">
<Attribute>RelatedRuns</Attribute>
<Structure>subnode</Structure>
<Subscript>"RelatedRuns"</Subscript>
</Data>
<Data name="TestDefaultData">
<Value name="1">

Page 2 of 9

https://community.intersystems.com/post/what-causing-journals-grow-rapidly

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

<Value>%%CLASSNAME</Value>
</Value>
<Value name="2">
<Value>TypeCode</Value>
</Value>
</Data>
<DataLocation>^Demo.Data.TestD</DataLocation>
<DefaultData>TestDefaultData</DefaultData>
<IdLocation>^Demo.Data.TestD</IdLocation>
<IndexLocation>^Demo.Data.TestI</IndexLocation>
<StreamLocation>^Demo.Data.TestS</StreamLocation>
<Type>%Library.CacheStorage</Type>
}

Then in the %SaveData label of the generated routine you will find this, with regard to updating the Collection, in
case of updating an existing object instance:

kill ^Demo.Data.TestD(id,"RelatedRuns")
set zzc40v1=$Order(i%RelatedRuns(""),1,val)
While zzc40v1'="" {
 Set ^Demo.Data.TestD(id,"RelatedRuns",zzc40v1)=val,zzc40v1 = $Order
(i%RelatedRuns(zzc40v1),1,val)
}

You can see we KILL the whole “previous” node, and then loop over the “current” items and SET them.

Journal-wise this will lead to an entry for each time in the Collection ‒ twice ‒ once during this KILL and once for the
SET (assuming it’s still there).

So assume a scenario where we have a loop adding items to a collection, each item each iteration, with a save in
each iteration.

The first iteration would have 1 Journal entry (for the Collection, we’ll focus just on this aspect).

The 2nd iteration will have 3 entries ‒ 1 for killing the 1st item, then another 2 for setting the 1st (again) and the 2nd.

The 3rd iteration will have already 5 entries ‒ 2 for killing the 2 existing items, and 3 for (re)setting the previous 2,
plus adding the 3rd new one.

The 4th iteration will have now 7 entries - killing 3, setting 4.

You can see that in general each iteration n has 2n-1 journal entries.

And in total after 4 iterations we had: 1 + 3 + 5 + 7 = 16 entries.

And in general, after n iterations we’d have n2 Journal entries.

Here’s what the Journal looks like after running such a loop as per above ‒

USER>set test=##class(Demo.Data.Test).%New() for i=1:1:4 { do test.RelatedRuns.SetAt(
i,i) do test.%Save() }

 Address Proc ID Op Directory Global & Value
===

Page 3 of 9

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

 364040 22092 BT
 364056 22092 S c:\intersystems+ Demo.Data.TestD = 1
 364112 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1) = 1
 364184 22092 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 364240 22092 CT
 364256 22092 BT
 364272 22092 kT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1)
 364344 22092 KT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns")
 364408 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1) = 1
 364480 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",2) = 2
 364552 22092 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 364612 22092 CT
 364628 22092 BT
 364644 22092 kT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1)
 364716 22092 kT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",2)
 364788 22092 KT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns")
 364852 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1) = 1
 364924 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",2) = 2
 364996 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",3) = 3
 365068 22092 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 365128 22092 CT
 365144 22092 BT
 365160 22092 kT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1)
 365232 22092 kT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",2)
 365304 22092 kT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",3)
 365376 22092 KT c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns")
 365440 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1) = 1
 365512 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",2) = 2
 365584 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",3) = 3
 365656 22092 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",4) = 4
 365728 22092 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 365788 22092 CT

Now imagine an array with 1000s or 10,000s of items… and say you have 100s or more of such objects… your
Journal would get very big very fast.

Note I’m focusing here on the Journal space aspect here, but of course the writing performance impact (to the
Journal file and possibly to the CACHE.DAT file) is also an issue.

The Consideration
So, the general rule of thumb for using Collections (and this has been mentioned in different contexts over the
years, for various considerations, not just this Journal one) is to use it for small-sized Collections. This way even if
there is this Journal-related overhead it should not be significant.

Alternatives could include (but not limited to) using references with Foreign Keys to connection/relation-tables.

Note for InterSystems IRIS
It is important to note that in InterSystems IRIS (as of version 2019.1; including of course IRIS for Health and the
related HealthShare Health Connect based on these versions) this behavior has changed (for internal reference the
related change is identified as MAK4939). And updating an object with a Collection will not cause all of the sub-
node Collection items to be deleted and set all over again.

Referring to the example we used above, this is the generated code in the routine pertaining to the same area of
code:

Page 4 of 9

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

kill nodes merge nodes=i%RelatedRuns
set zzc40v1=""
for {
 set zzc40v1 = $Order(^Demo.Data.TestD(id,"RelatedRuns",zzc40v1),1,data)
 Quit:zzc40v1=""
 if $data(nodes(zzc40v1),val) {
 if data=val kill nodes(zzc40v1)
 } else {
 kill ^Demo.Data.TestD(id,"RelatedRuns",zzc40v1)
 }
}
merge ^Demo.Data.TestD(id,"RelatedRuns")=nodes

You can see here we use a temporary local array, and merge it in (and kill only necessary removal of the Collection
items).

The same loop above would generate in InterSystems IRIS the following Journal entries ‒

 Address Proc ID Op Directory Global & Value
===
 1471332 28064 BT
 1471348 28064 S c:\intersystems+ Demo.Data.TestD = 1
 1471400 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",1) = 1
 1471468 28064 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 1471524 28064 CT
 1471540 28064 BT
 1471556 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns") = ""
 1471620 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",2) = 2
 1471692 28064 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 1471752 28064 CT
 1471768 28064 BT
 1471784 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns") = ""
 1471848 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",3) = 3
 1471920 28064 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 1471980 28064 CT
 1471996 28064 BT
 1472012 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns") = ""
 1472076 28064 ST c:\intersystems+ Demo.Data.TestD(1,"RelatedRuns",4) = 4
 1472148 28064 ST c:\intersystems+ Demo.Data.TestD(1) = $lb("","")
 1472208 28064 CT

Here you can see the minimum number of entries (n), per each item update.

Real-life Scenarios
At this stage you might be asking yourself what is the probability of running into this scenario, when would I have
such a loop (or similar).

I’ll give you two examples, both real-life ones.

Page 5 of 9

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

The first relates to the customer use-case I mentioned above (with the “dots” visualization of the Journal switches).

In their solution they had an entity that was created and updated according to incoming messages (specifically HL7
and DICOM messages), and so, in order to keep track (including display in a UI) the messages pertaining to each
entity, these entities had an array of Message IDs that were related to it.

Typically, this number of “Relates Messages” would be less than 10 and no more than 20 or 30. But occasionally
one of the sending systems would get into a “sending spree” and send continuously many messages, for several
entities, causing the Collection to grow to 10,000s.

Here's a small snippet of what the Jounral looked like:

Business Process Use-case
The second real-life use-case is a much more common one, one that probably anyone who uses Ensemble
Business Processes runs into (knowingly or unknowingly). And will bring us to the sub title of this article ‒ “An even

Page 6 of 9

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

more secret Business Process Parameter”.

It might be little unknown that a Business Process is a Persistent entity. I assume many are aware of this fact (as it
has an ID for example which is sometimes references, and there is a page in the Management Portal: View ->
“Business Process Log/Instances” that shows the records).

But I assume much less are aware that this entity holds two Collections (with a sub-node storage):

%MessagesRecieved & %MessagesSent

As their names hint these Collections hold all the messages a Business Process has sent or received during its life
span. They are intended to make it easier for developers to perform searches on what has been already sent or
received for a given BP in a performant manner, without having to traverse all BPs.

But as per above this is prone to the issue described above.

Imagine a BP that makes a call to a BO to select rows from a database, then inside the BP there is a loop over the
rows returned, and it sends each row’s data as a request to another BO to perform some action on it. Quite a
common scenario for various use-cases. Each iteration will add message IDs to the Collections mentioned above,
and these will grow per the numbers of rows processed. In some cases of course this could be 100s or more.

Here a snippet from a Journal of a customer system where this happened:

Page 7 of 9

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

Now, unlike the general case mentioned above, where you can control your own data model and address this
issue, keeping this consideration in mind ‒ what you can do about the Business Process Collections…?

Here comes the Class Parameter, from the Ens.BusinessProcess class reference ‒

parameter SKIPMESSAGEHISTORY = 0;

If this parameter is TRUE, then arrays %MessagesSent and %MessagesReceived
will not be populated.

So if you want to avoid these Collections from being populated (and accumulating and bloating your Journals) set
this parameter to the value of 1.

Note that if you use the graphic BPL Designer for your Business Process, you will need to open the class definition
(in your favorite IDE) and add this parameter.

Page 8 of 9

https://cedocs.intersystems.com/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=ENSLIB&CLASSNAME=Ens.BusinessProcess#SKIPMESSAGEHISTORY

A Hidden Object Design Consideration “Journal Killer” [... And an even more secret Business Process Parameter]
Published on InterSystems Developer Community (https://community.intersystems.com)

And a reminder ‒ in InterSystems IRIS (and IRIS for Health, and IRIS-based HealthShare Health Connect) this
is less of a concern as per above, still if you don’t need these Collections, you can use this parameter as well.

Now you can't say you were not aware...

#Business Process (BPL) #Databases #Data Model #Interoperability #Journaling #Object Data Model #Tips &
Tricks #Health Connect #InterSystems IRIS #InterSystems IRIS for Health

 Source
URL:https://community.intersystems.com/post/hidden-object-design-consideration-%E2%80%9Cjournal-
killer%E2%80%9D-and-even-more-secret-business-process

Page 9 of 9

https://community.intersystems.com/tags/business-process-bpl
https://community.intersystems.com/tags/databases
https://community.intersystems.com/tags/data-model
https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/journaling
https://community.intersystems.com/tags/object-data-model
https://community.intersystems.com/tags/tips-tricks
https://community.intersystems.com/tags/tips-tricks
https://community.intersystems.com/tags/health-connect
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health
https://community.intersystems.com/post/hidden-object-design-consideration-%E2%80%9Cjournal-killer%E2%80%9D-and-even-more-secret-business-process
https://community.intersystems.com/post/hidden-object-design-consideration-%E2%80%9Cjournal-killer%E2%80%9D-and-even-more-secret-business-process

