
Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mikhail Khomenko · Apr 20, 2020 14m read
 Open Exchange

Adding TLS and DNS to IRIS-based Services Deployed on Google
Kubernetes Engine
This article is a continuation of Deploying InterSystems IRIS solution on GKE Using GitHub Actions, in
which, with the help of GitHub Actions pipeline, our zpm-registry was deployed in a Google
Kubernetes cluster created by Terraform. In order not to repeat, we’ll take as a starting point
that:

You’ve forked the repository Github Actions + GKE + zpm example and allow Actions in
your fork. Its root directory will be referenced as <root_repo_dir> throughout the article.
You’ve replaced the placeholders in the Terraform file.
You’ve created all the secrets (in the GitHub Actions Secrets page) mentioned in the only
table in Deploying InterSystems IRIS solution on GKE Using GitHub Actions.
All code samples will be stored in the GitHub-GKE-TLS repository to simplify copying and
pasting.

Assuming all the above, let’s continue.

Getting Started

Last time we made our connection to zpm-registry like this:
curl -XGET -u _system:SYS 104.199.6.32:52773/registry/packages/-/all

The absence of a protocol before the IP address means that we’re using HTTP and, therefore,
traffic is unencrypted and Infamous Eve can catch our password.

To protect against Eve eavesdropping, we need to encrypt the traffic, which means
using HTTPS. Can we do this?
104.199.6.32:52773/registry/packages → https://104.199.6.32:52773/registry/packages

Generally speaking, yes. You can obtain the certificate for an IP address. But this solution has
drawbacks. Read Using an IP Address in an SSL Certificate and SSL for IP Address for more details. In
short, you need a static IP address and there are no free certificate providers with that ability.
The benefit is also questionable.

As for free providers in general, fortunately, they do exist, as you’ll find in 9 Best Free SSL
Certificate Sources. One of the leaders is Let’s Encrypt, but it issues certificates only for domain
names, although there are plans to add IP Addresses in Certificates.

So, to encrypt the traffic, you first need to get a domain name. If you already have a domain
name, you can skip the next section.

Page 1 of 28

https://community.intersystems.com/user/mikhail-khomenko
https://openexchange.intersystems.com/package/zpm-registry
https://openexchange.intersystems.com/package/zpm-registry
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gke-using-github-actions
https://github.com/intersystems-community/github-gke-zpm-registry
https://github.com/intersystems-community/github-gke-zpm-registry/blob/master/terraform/main.tf
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gke-using-github-actions
https://github.com/intersystems-community/github-gke-tls
https://en.wikipedia.org/wiki/Alice_and_Bob#Cast_of_characters
https://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://104.199.6.32:52773/registry/packages
https://stackoverflow.com/questions/2043617/is-it-possible-to-have-ssl-certificate-for-ip-address-not-domain-name
https://www.geocerts.com/support/ip-address-in-ssl-certificate
https://www.digitalocean.com/community/questions/ssl-for-ip-address
https://blog.hubspot.com/website/best-free-ssl-certificate-sources
https://blog.hubspot.com/website/best-free-ssl-certificate-sources
https://letsencrypt.org/
https://letsencrypt.org/upcoming-features/#ip-addresses-in-certificates

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

Getting a Domain Name

Buy a domain name from a domain registrar. There are quite a few. Prices depend on the
domain name and level of service. For development purposes, you can take, for example, a
domain with the suffix .dev, which will probably be inexpensive.

We won’t get into the domain registration process here, there’s nothing complicated about
it. Note that from here on we’ll assume the registered domain name is example.com. Substitute
your own domain.

At the end of the domain registration process, you’ll have a domain name and domain zone.
They are not the same thing. See the note Definition - Domains vs. Zones and this small video, DNS
Zones, to understand the difference.

Briefly, if you imagine the domain as an organization, the zone can be thought of as a
department in this organization. Our domain is example.com and we’ll call the zone the same:
example.com. (In a small organization you can have just one department.) Each DNS zone
should have special servers that know about the IP addresses and domain names inside its
zone. These links are called resource records (RR). They can be of different types (see DNS
Record types). The most widely used is the A-type.

The special servers, called name servers, are provided by the domain registrar. For example,
my registrar gave me the following two name servers:
 ns39.domaincontrol.com

ns40.domaincontrol.com

You’ll need to create a resource record (server domain name = IP address), for instance:
zpm.example.com = 104.199.6.32

You do this by creating an A-type record in the zone example.com. After you save this record,
other DNS servers all around the world will eventually know about this update and you’ll be able
to refer to your zpm-registry by name: zpm.example.com:52773/registry/.

Domains and Kubernetes

As you might remember, the zpm service IP address was created during our Kubernetes
Service (Load Balancer type) deployment. If you’ve played with zpm-registry, removed it, and
then decided to deploy zpm-registry again, you’re likely to get another IP address. If that’s the
case, you should again go to the DNS registrar web console and set a new IP address for
zpm.example.com.

There’s another way to do this. During your Kubernetes deployment, you can deploy a helper
tool, called External DNS, that can retrieve a newly created IP address from Kubernetes Services
or from Ingress and create the corresponding DNS record. The tool doesn’t support all registrars,
but it does support Google Cloud DNS, which can be responsible for DNS zones, providing name
servers, and storing your resource records.

Page 2 of 28

https://www.icann.org/registrar-reports/accreditation-qualified-list.html
https://simpledns.plus/help/definition-domains-vs-zones
https://www.youtube.com/watch?v=dk7GS6GbeiY
https://www.youtube.com/watch?v=dk7GS6GbeiY
https://simpledns.plus/help/dns-record-types
https://simpledns.plus/help/dns-record-types
https://simpledns.plus/help/a-records
https://github.com/kubernetes-sigs/external-dns
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://cloud.google.com/dns

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

To use Google Cloud DNS, we need to transfer responsibility to it for our DNS zone
example.com in the registrar web console. To do this, replace the name servers provided by
domain registrar with the ones Google Cloud DNS provides. We will need to create the
example.com zone in the Google console and copy/paste the name servers provided by
Google. See details below.

Let’s see how to add External DNS and create our Google Cloud DNS in the code. However, to
save space, I’ll include only parts of the code here. As I noted earlier, you’ll find the complete
samples in GitHub GKE TLS repository.

Adding External DNS

To deploy this application to the GKE, we’ll use the power of Helm. You’ll find both the article An
Introduction to Helm, the Package Manager for Kubernetes and the official documentation helpful.

Add these lines as the last job in the "kubernetes-deploy" stage in the pipeline file. Also add
several new variables in the "env" section:
 $ cat <root_repo_dir>/.github/workflows/workflow.yaml

...

env:

...

 DNS_ZONE: example.com

 HELM_VERSION: 3.1.1

Page 3 of 28

https://github.com/intersystems-community/github-gke-tls
https://github.com/intersystems-community/github-gke-tls
https://helm.sh/
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://helm.sh/docs/

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 EXTERNAL_DNS_CHART_VERSION: 2.20.6

...

jobs:

...

 kubernetes-deploy:

...

Page 4 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 steps:

...

 - name: Install External DNS
 run: |
 wget -q https://get.helm.sh/helm-v${HELM_VERSION}-linux-amd64.tar.gz

 tar -zxvf helm-v${HELM_VERSION}-linux-amd64.tar.gz
 cd linux-amd64

 ./helm version

 ./helm repo add bitnami https://charts.bitnami.com/bitnami

 gcloud container clusters get-credentials ${GKE_CLUSTER} --zone
${GKE_ZONE} --project ${PROJECT_ID}
 echo ${GOOGLE_CREDENTIALS} > ./credentials.json

 kubectl create secret generic external-dns --from-file=./credentials.json --dry-
run -o yaml | kubectl apply -f -
 ./helm upgrade external-dns bitnami/external-dns \

 --install \

 --atomic \

 --version=${EXTERNAL_DNS_CHART_VERSION} \
Page 5 of 28

https://get.helm.sh/helm-v
https://charts.bitnami.com/bitnami
https://charts.bitnami.com/bitnami

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 --set provider=google \

 --set google.project=${PROJECT_ID} \

 --set google.serviceAccountSecret=external-dns \

 --set registry=txt \

 --set txtOwnerId=k8s \

 --set policy=sync \

Page 6 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 --set domainFilters={${DNS_ZONE}} \

 --set rbac.create=true

You can read more about parameters set by --set in the External DNS chart documentation. For
now, just add these lines and let’s proceed.

Creating Cloud DNS

First, add a new file under the <root_repo_dir>/terraform/ directory. Remember to use your
domain zone:
 $ cat <root_repo_dir>/terraform/clouddns.tf
resource "google_dns_managed_zone" "my-zone" {
 name = "zpm-zone"
 dns_name = "example.com."
 description = "My DNS zone"
}

Also be sure that the user on whose behalf Terraform works has at least the following roles
(note the DNS Administrator and Kubernetes Engine Admin roles):

If you run the GitHub Actions pipeline, these will be created.
With External DNS and Cloud DNS ready (though virtually at the moment), we can now
consider how to expose our zpm-service in a way different from the load balancer service type.

Kubernetes

Our zpm-service is now exposed using a regular Kubernetes service load balancer. See the
file <root_repo_dir>/k8s/service.yaml . You can read more about Kubernetes Services in Exposing
applications using services. What’s important for us is that load balancer services don’t have the
ability to set the domain name, and the actual Google Load Balancers created by those
Kubernetes Services resources work on the TCP/UDP level of the OSI. This level knows nothing
about HTTP and certificates. So we need to replace the Google network load balancer with
an HTTP load balancer. We can create such a load balancer using the Kubernetes Ingress resource
 instead of the Kubernetes Service.

At this point, it would probably be a good idea for you to read Kubernetes NodePort vs LoadBalancer
vs Ingress? When should I use what?.

Now let’s continue. What does Ingress usage mean in the code? Go to
the <root_repo_dir>/k8s/ directory and make the following changes. The Service should be
of type NodePort:
 $ cat <root_repo_dir>/k8s/service.yaml

apiVersion: v1
Page 7 of 28

https://github.com/bitnami/charts/tree/master/bitnami/external-dns
https://github.com/intersystems-community/github-gke-zpm-registry/blob/master/k8s/service.yaml
https://cloud.google.com/kubernetes-engine/docs/how-to/exposing-apps
https://cloud.google.com/kubernetes-engine/docs/how-to/exposing-apps
https://cloud.google.com/load-balancing/docs/network
https://en.wikipedia.org/wiki/OSI_model
https://cloud.google.com/load-balancing/docs/https
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

kind: Service

metadata:

 name: zpm-registry

 namespace: iris

spec:

 selector:

Page 8 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 app: zpm-registry

 ports:

 - protocol: TCP

 port: 52773

 targetPort: 52773

 type: NodePort

Page 9 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

And you need to add the Ingress manifest:
 $ cat <root_repo_dir>/k8s/ingress.yaml

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 annotations:

 kubernetes.io/ingress.class: gce

Page 10 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 networking.gke.io/managed-certificates: zpm-registry-certificate

 external-dns.alpha.kubernetes.io/hostname: zpm.example.com

 name: zpm-registry

 namespace: iris

spec:

 rules:

Page 11 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 - host: zpm.example.com

 http:

 paths:

 - backend:

 serviceName: zpm-registry

 servicePort: 52773

Page 12 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 path: /*

Also, add the line marked in bold into the workflow file:
 $ cat <root_repo_dir>/.github/workflows/workflow.yaml

...

- name: Apply Kubernetes manifests

 working-directory: ./k8s/

...

 kubectl apply -f service.yaml

Page 13 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 kubectl apply -f ingress.yaml

If you deploy this manifest, the Google Cloud controller will create an external HTTP load
balancer, which will listen for traffic to the host zpm.example.com and send this traffic to all
Kubernetes nodes on the port that’s opened during Kubernetes NodePort Service deployment.
This port is arbitrary, but you don’t need to worry about it ̶ it’s completely automated.

We can define a more detailed configuration of Ingress using annotations:
 annotations:

 kubernetes.io/ingress.class: gce

 networking.gke.io/managed-certificates: zpm-registry-certificate

 external-dns.alpha.kubernetes.io/hostname: zpm.example.com

The first line says we’re using the "gce" Ingress controller. This entity creates an HTTP load
balancer according to settings in the Ingress resource.

The second line is the one that relates to certificates. We’ll return to this setting later.

The third line sets the external DNS that should bind the specified hostname
(zpm.example.com) to the IP address of the HTTP load balancer.

If you did deploy this manifest, you’d see (after 10 minutes or so) that an Ingress has been
created, but not everything else worked:

Page 14 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

What are those "Backend services," one of which seems to be bad?

See their names, like "k8s-be-31407-..." and "k8s-be-31445-..."? These are ports opened on our
single Kubernetes node. Your ports are likely to have different numbers.

31407 is a port that’s opened for health checks, which the HTTP load balancer constantly sends to
be sure that node is alive.

You can take a look at those health check results by connecting to Kubernetes and proxying
Node Port 31407:
 $ gcloud container clusters get-credentials <CLUSTER_NAME> --zone
<LOCATION> --project <PROJECT_ID>
$ kubectl proxy &

$ curl localhost:8001/healthz

ok

$ fg Page 15 of 28

https://cloud.google.com/load-balancing/docs/health-check-concepts

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

^Ctrl+C

Another port, 31445, is a NodePort opened for our zpm-registry service:

 $ kubectl -n iris get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

zpm-registry NodePort 10.23.255.89 <none> 52773:31445/TCP 24m

And the default health checks the HTTP load balancer sends a report that this service is down.
Is it really?

What are those Health checks in more detail? Click on the Backend service name. Scroll down
a little to see the Health check name:

Click the Health check name to see details:

Page 16 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 17 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

We should replace the Health check "/" path with a path understandable by IRIS, like
"/csp/sys/UtilHome.csp":

 $ curl -I localhost:52773/csp/sys/UtilHome.csp

Handling connection for 52773
HTTP/1.1 200 OK

So, how can we set that new path in the Health check. The answer with readiness/liveness probes
 as they’re used, if present, in place of the default "/" path.

So, let’s add those probes to the Kubernetes StatefulSet manifest:
 $ cat <root_repo_dir>/k8s/statefulset.tpl

...

containers:

- image: DOCKER_REPO_NAME:DOCKER_IMAGE_TAG

...

 ports:

Page 18 of 28

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 - containerPort: 52773

 name: web

 readinessProbe:

 httpGet:

 path: /csp/sys/UtilHome.csp

 port: 52773

Page 19 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 initialDelaySeconds: 10

 periodSeconds: 10

 livenessProbe:

 httpGet:

 path: /csp/sys/UtilHome.csp

 port: 52773

Page 20 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 periodSeconds: 10

 volumeMounts:

 - mountPath: /opt/zpm/REGISTRY-DATA

 name: zpm-registry-volume

 - mountPath: /mount-helper

 name: mount-helper

Page 21 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

So far, we’ve made several changes just to open a door for the main event: the certificate. Let’s
get it and run all this finally.

Getting the Certificate

I highly recommended you watch these videos that describe different ways to obtain SSL/TLS
certificates for Kubernetes:

Create a Kubernetes TLS Ingress from scratch in Minikube
Automatically Provision TLS Certificates in K8s with cert-manager
Use cert-manager with Let's Encrypt® Certificates Tutorial: Automatic Browser-Trusted HTTPS
Super easy new way to add HTTPS to Kubernetes apps with ManagedCertificates on GKE

In short, there are several ways to get a certificate: openssl self-signed, manual certbot by Let’s
Encrypt, automated cert-manager connected to Let’s Encrypt and, finally, the native Google
approach, Managed Certificates, which is our choice for its simplicity.

Let’s add it:
 $ cat <root_repo-dir>/k8s/managed-certificate.yaml

apiVersion: networking.gke.io/v1beta1

kind: ManagedCertificate

metadata:

 name: zpm-registry-certificate

 namespace: iris

Page 22 of 28

https://www.youtube.com/watch?v=7K0gAYmWWho
https://www.youtube.com/watch?v=JJTJfl-V_UM
https://www.youtube.com/watch?v=etC5d0vpLZE
https://www.youtube.com/watch?v=ceeKC4izk4E
https://certbot.eff.org/
https://certbot.eff.org/
https://github.com/jetstack/cert-manager
https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

spec:

 domains:

 - zpm.example.com

Add the bolded line to the deployment pipeline:
 $ cat <root_repo_dir>/.github/workflows/workflow.yaml

...

- name: Apply Kubernetes manifests

 working-directory: ./k8s/

 run: |

 gcloud container clusters get-credentials ${GKE_CLUSTER} --zone

Page 23 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

${GKE_ZONE} --project ${PROJECT_ID}
 kubectl apply -f namespace.yaml

 kubectl apply -f managed-certificate.yaml

 kubectl apply -f service.yaml

...

Enabling it in Ingress was done before as the Ingress annotation, remember?
 $ cat <root_repo_dir>/k8s/ingress.yaml

...

annotations:

 kubernetes.io/ingress.class: gce

 networking.gke.io/managed-certificates: zpm-registry-certificate Page 24 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

...

So now we’re ready to push all those changes to the repository:
$ git add .github/ terraform/ k8s/
$ git commit -m "Add TLS to GKE deploy"
$ git push

After 15 minutes or so (cluster provisioning should be done), you should see a "green" Ingress:

Then you should set at least two name servers provided by Google in your domain name
registrars console (if you use another registrar than Google Domains):

We won’t describe this process as it’s specific to each registrar and usually well-described in the
registrar’s documentation.

Google already knows about the new resource record created automatically by ExternalDNS:
$ dig +short @ns-cloud-b1.googledomains.com. zpm.example.com

Page 25 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

34.102.202.2

But it will take some time until this record is propagated all around the world. Eventually,
however, you’ll receive:
$ dig +short zpm.example.com
34.102.202.2

It’s a good idea to check the certificate status:
 $ gcloud container clusters get-credentials <CLUSTER_NAME> --zone
<LOCATION> --project <PROJECT_ID>
$ kubectl -n iris get managedcertificate zpm-registry-certificate -ojson | jq '.status'

{

 "certificateName": "mcrt-158f20bb-cdd3-451d-8cb1-4a172244c14f",

 "certificateStatus": "Provisioning",

 "domainStatus": [
Page 26 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

 {

 "domain": "zpm.myardyas.online",

 "status": "Provisioning"

 }

]

}

Page 27 of 28

Adding TLS and DNS to IRIS-based Services Deployed on Google Kubernetes Engine
Published on InterSystems Developer Community (https://community.intersystems.com)

You can read about the various status meanings on the Google-managed SSL certificate status page.
Note that you might have to wait an hour or so for the initial certificate provisioning.

You might encounter the domainStatus "FailedNotVisible." If so, check that you’ve really added
Google name servers in your DNS registrar console.

You should wait until both certificateStatus and domainStatus become available, and you may even
have to wait a little longer, as stated in Google-manages SSL certificate status. Finally, however, you
should be able to call zpm-registry with HTTPS:
curl -XGET -u _system:SYS https://zpm.example.com/registry/packages/-/all

Conclusion

Google does a great job creating all required Google resources based on Kubernetes
resources.

In addition, Google Managed Certificates is a cool feature that greatly simplifies obtaining a
certificate.

As always, don’t forget to remove Google resources (GKE, CloudDNS) when you no longer
need them as they cost money.

#Best Practices #Cloud #Containerization #DevOps #GitHub #Kubernetes #InterSystems IRIS #Open Exchange
Check the related application on InterSystems Open Exchange

 Source
URL:https://community.intersystems.com/post/adding-tls-and-dns-iris-based-services-deployed-google-kubernetes-
engine

Page 28 of 28

https://cloud.google.com/load-balancing/docs/ssl-certificates/google-managed-certs#certificate-managed-status
https://cloud.google.com/load-balancing/docs/ssl-certificates/google-managed-certs#certificate-managed-status
https://zpm.example.com/registry/packages/-/all
https://zpm.example.com/registry/packages/-/all
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/github
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/zpm-registry
https://community.intersystems.com/post/adding-tls-and-dns-iris-based-services-deployed-google-kubernetes-engine
https://community.intersystems.com/post/adding-tls-and-dns-iris-based-services-deployed-google-kubernetes-engine

