
Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mikhail Khomenko · Feb 11, 2020 17m read
 Open Exchange

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
In an earlier article (hope, you’ve read it), we took a look at the CircleCI deployment system, which integrates
perfectly with GitHub. Why then would we want to look any further? Well, GitHub has its own CI/CD platform called
GitHub Actions, which is worth exploring. With GitHub Actions, you don’t need to rely on some external, albeit cool,
service.

In this article we’re going to try using GitHub Actions to deploy the server part of InterSystems Package Manager,
ZPM-registry, on Google Kubernetes Engine (GKE).

As with all systems, the build/deploy process essentially comes down to “do this, go there, do that,” and so on. With
GitHub Actions, each such action is a job that consists of one or more steps, together known as a workflow. GitHub
will search for a description of the workflow in the YAML file (any filename ending in .yml or .yaml) in your
.github/workflows directory. See Core concepts for GitHub Actions for more details.

All further actions will be performed in the fork of the ZPM-registry repository. We’ll call this fork "zpm-registry" and
refer to its root directory as "<root_repo_dir> " throughout this article. To learn more about the ZPM application itself
see Introducing InterSystems ObjectScript Package Manager and The Anatomy of ZPM Module: Packaging Your
InterSystems Solution.

All code samples are stored in this repository to simplify copying and pasting. The prerequisites are the same as in
the article Automating GKE creation on CircleCI builds.

We’ll assume you’ve read the earlier article and already have a Google account, and that you’ve created a project
named "Development," as in the previous article. In this article, its ID is shown as <PROJECT_ID>. In the examples
below, change it to the ID of your own project.

Keep in mind that Google isn’t free, although it has a free tier. Be sure to control your expenses.

Workflow Basics

Let’s get started.

A simple and useless workflow file might look like this:
$ cd <root_repo_dir>
$ mkdir -p .github/workflows
$ cat <root_repo_dir>/.github/workflows/workflow.yaml
name: Traditional Hello World
on: [push]
jobs:
 courtesy:
 name: Greeting
 runs-on: ubuntu-latest

Page 1 of 16

https://community.intersystems.com/user/mikhail-khomenko
https://openexchange.intersystems.com/package/zpm-registry
https://openexchange.intersystems.com/package/zpm-registry
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://openexchange.intersystems.com/package/zpm-registry
https://help.github.com/en/actions/configuring-and-managing-workflows/configuring-a-workflow#about-workflows
https://help.github.com/en/actions/automating-your-workflow-with-github-actions/core-concepts-for-github-actions
https://github.com/intersystems-community/zpm-registry
https://community.intersystems.com/post/introducing-intersystems-objectscript-package-manager
https://community.intersystems.com/post/anatomy-zpm-module-packaging-your-intersystems-solution
https://community.intersystems.com/post/anatomy-zpm-module-packaging-your-intersystems-solution
https://github.com/intersystems-community/github-gke-zpm-registry
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://console.cloud.google.com/
https://support.google.com/googleapi/answer/7014113?hl=en
https://cloud.google.com/free/
https://cloud.google.com/billing/docs/

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

 steps:
 - name: Hello world
 run: echo "Hello, world!

When pushing to the repository, you need to execute a job named "Greeting," which consists of a single step:
printing a welcome phrase. The job should run on a GitHub-hosted virtual machine called the Runner, with the
latest version of Ubuntu installed.
After pushing this file to the repository, you should see on the Code GitHub tab that everything went well:

If the job had failed, you’d see a red X instead of a green checkmark. To see more, click on the green checkmark
and then on Details. Or you can immediately go to the Actions tab:

You can learn all about the workflow syntax in the help document Workflow syntax for GitHub Actions.

If your repository contains a Dockerfile for the image build, you could replace the "Hello world" step with something
more useful like this example from starter-workflows:
steps:
- uses: actions/checkout@v2
- name: Build the Docker image
 run: docker build . --file Dockerfile --tag my-image:$(date +%s)

Notice that a new step, "uses: action/checkout@v2", was added here. Judging by the name "checkout", it clones
the repository, but where to find out more?

As in the case of CircleCI, many useful steps don’t need to be rewritten. Instead, you can take them from the

Page 2 of 16

https://help.github.com/en/actions/automating-your-workflow-with-github-actions/workflow-syntax-for-github-actions
https://github.com/actions/starter-workflows/blob/master/ci/docker-image.yml

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

shared resource called Marketplace. Look there for the desired action, and note that it’s better to take those that
are marked as "By actions" (when you hover over - "Creator verified by Github").

The "uses" clause in the workflow reflects our intention to use a ready-made module, rather than writing one
ourselves.

The implementations of the actions themselves can be written in almost any language, but JavaScript is preferred.
If your action is written in JavaScript (or TypeScript), it will be executed directly on the Runner machine. For other
implementations, the Docker container you specify will run with the desired environment inside, which is obviously
somewhat slower. You can read more about actions in the aptly titled article, About actions.

The checkout action is written in TypeScript. And in our example, Terraform action is a regular bash script launched
in Docker Alpine.

There’s a Dockerfile in our cloned repository, so let's try to apply our new knowledge. We’ll build the image of the
ZPM registry and push it into the Google Container Registry. In parallel, we’ll create the Kubernetes cluster in
which this image will run, and we’ll use Kubernetes manifests to do this.

Here’s what our plan, in a language that GitHub understands, will look like (but keep in mind that this is a bird's eye
view with many lines omitted for simplification, so don’t actually use this config):
name: Workflow description
Trigger condition. In this case, only on push to ‘master’ branch
on:
 push:
 branches:
 - master
Here we describe environment variables available
for all further jobs and their steps
These variables can be initialized on GitHub Secrets page
We add “${{ secrets }}” to refer them
env:

Page 3 of 16

https://github.com/marketplace?type=actions
https://help.github.com/en/actions/automating-your-workflow-with-github-actions/about-actions
https://github.com/actions/checkout
https://github.com/hashicorp/terraform-github-actions

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

 PROJECT_ID: ${{ secrets.PROJECT_ID }}

Define a jobs list. Jobs/steps names could be random but
it’s better to have they meaningful
jobs:
 gcloud-setup-and-build-and-publish-to-GCR:
 name: Setup gcloud utility, Build ZPM image and Publish it to Container Registry
 runs-on: ubuntu-18.04
 steps:
 - name: Checkout
 - name: Setup gcloud cli
 - name: Configure docker to use the gcloud as a credential helper
 - name: Build ZPM image
 - name: Publish ZPM image to Google Container Registry

 gke-provisioner:
 name: Provision GKE cluster
 runs-on: ubuntu-18.04
 steps:
 - name: Checkout
 - name: Terraform init
 - name: Terraform validate
 - name: Terraform plan
 - name: Terraform apply

 kubernetes-deploy:
 name: Deploy Kubernetes manifests to GKE cluster
 needs:
 - gcloud-setup-and-build-and-publish-to-GCR
 - gke-provisioner
 runs-on: ubuntu-18.04
 steps:
 - name: Checkout
 - name: Replace placeholders with values in statefulset template
 - name: Setup gcloud cli
 - name: Apply Kubernetes manifests

This is the skeleton of the working config in which there are no muscles, the real actions for each step. Actions can
be accomplished with a simple console command ("run" or "run |" if there are several commands):
- name: Configure docker to use gcloud as a credential helper
 run: |
 gcloud auth configure-docker

Page 4 of 16

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

You can also launch actions as a module with "uses":
- name: Checkout
 uses: actions/checkout@v2

By default, all jobs run in parallel, and the steps in them are done in sequence. But by using "needs", you can
specify that one job should wait for the rest to complete:
needs:
- gcloud-setup-and-build-and-publish-to-GCR
- gke-provisioner

By the way, in the GitHub Web interface, such waiting jobs appear only when the jobs they’re waiting for are
executed.

The "gke-provisioner" job mentions Terraform, which we examined in the previous article. The preliminary settings
for its operation in the GCP environment are repeated for convenience in a separate markdown file. Here are some
additional useful links:

Terraform Apply Subcommand documentation
Terraform GitHub Actions repository
Terraform GitHub Actions documentation

In the "kubernetes-deploy" job, there is a step called "Apply Kubernetes manifests". We’re going to use manifests
as mentioned in the article Deploying InterSystems IRIS Solution into GCP Kubernetes Cluster GKE Using CircleCI
, but with a slight change.

In the previous articles, IRIS application has been stateless. That is, when restarting the pod, all data is returned to
its default place. This is great, and it’s often necessary, but for ZPM registry you need to somehow save the
packages that were loaded into it, regardless of how many times you need to restart. Deployment allows you to do
this, of course, but not without limitations.

For stateful applications, it’s better to choose the StatefulSet resource. Pros and cons can be found in the GKE
documentation topic on Deployments vs. StatefulSets and the blog post Kubernetes Persistent Volumes with
Deployment and StatefulSet.

The StatefulSet resource is in the repository. Here’s the part that’s important for us:
volumeClaimTemplates:
- metadata:
 name: zpm-registry-volume
 namespace: iris
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Page 5 of 16

https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://github.com/intersystems-community/github-gke-zpm-registry/blob/master/Terraform.md
https://www.terraform.io/docs/github-actions/configuration/apply.html
https://github.com/hashicorp/terraform-github-actions
https://www.terraform.io/docs/github-actions/index.html
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes#deployments_vs_statefulsets
https://akomljen.com/kubernetes-persistent-volumes-with-deployment-and-statefulset/
https://akomljen.com/kubernetes-persistent-volumes-with-deployment-and-statefulset/
https://github.com/intersystems-community/github-gke-zpm-registry/tree/master/k8s

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

The code creates a 10GB read/write disk that can be mounted by a single Kubernetes worker node. This disk (and
the data on it) will survive the restart of the application. It can also survive the removal of the entire StatefulSet, but
for this you need to set the correct Reclaim Policy, which we won’t cover here.

Before breathing life into our workflow, let's add a few more variables to GitHub Secrets:

The following table explains the meaning of these settings (service account keys are also present):

Name Meaning Example
 GCR_LOCATION Global GCR location eu.gcr.io
 GKE_CLUSTER GKE cluster name dev-cluster
 GKE_ZONE Zone to store an image europe-west1-b
 IMAGE_NAME Image registry name zpm-registry
 PROJECT_ID GCP Project ID possible-symbol-254507
 SERVICE_ACCOUNT_KEY JSON key GitHub uses to connect to

GCP.
 Important: it has to be base64-encoded
(see note below)

 ewogICJ0eXB...

 TF_SERVICE_ACCOUNT_KEY JSON key Terraform uses to connect to
GCP (see note below)

 {
…

Page 6 of 16

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://developer.github.com/v3/actions/secrets/
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

Name Meaning Example
}

For SERVICE_ACCOUNT_KEY, if your JSON-key has a name, for instance, key.json, run the following command:
$ base64 key.json | tr -d '\n'

For TF_SERVICE_ACCOUNT_KEY, note that its rights are described in Automating GKE creation on CircleCI
builds.

One small note about SERVICE_ACCOUNT_KEY: if you, like me, initially forgot to convert it to base64 format,
you’ll see a screen like this:

Now that we’ve looked at the workflow backbone and added the necessary variables, we’re ready to examine the
full version of the workflow (<root_repo_dir>/.github/workflow/workflow.yaml):
name: Build ZPM-registry image, deploy it to GCR. Run GKE. Run ZPM-registry in
GKE
on:
 push:
 branches:
 - master
Environment variables.
${{ secrets }} are taken from GitHub -> Settings -> Secrets
${{ github.sha }} is the commit hash
env:
 PROJECT_ID: ${{ secrets.PROJECT_ID }}
 SERVICE_ACCOUNT_KEY: ${{ secrets.SERVICE_ACCOUNT_KEY }}
 GOOGLE_CREDENTIALS: ${{ secrets.TF_SERVICE_ACCOUNT_KEY }}

Page 7 of 16

https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://github.com/intersystems-community/github-gke-zpm-registry/blob/master/.github/workflows/workflow.yaml

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

 GITHUB_SHA: ${{ github.sha }}
 GCR_LOCATION: ${{ secrets.GCR_LOCATION }}
 IMAGE_NAME: ${{ secrets.IMAGE_NAME }}
 GKE_CLUSTER: ${{ secrets.GKE_CLUSTER }}
 GKE_ZONE: ${{ secrets.GKE_ZONE }}
 K8S_NAMESPACE: iris
 STATEFULSET_NAME: zpm-registry

jobs:
 gcloud-setup-and-build-and-publish-to-GCR:
 name: Setup gcloud utility, Build ZPM image and Publish it to Container Registry
 runs-on: ubuntu-18.04
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Setup gcloud cli
 uses: GoogleCloudPlatform/github-actions/setup-gcloud@master
 with:
 version: '275.0.0'
 service_account_key: ${{ secrets.SERVICE_ACCOUNT_KEY }}

 - name: Configure docker to use the gcloud as a credential helper
 run: |
 gcloud auth configure-docker

 - name: Build ZPM image
 run: |
 docker build -t
${GCR_LOCATION}/${PROJECT_ID}/${IMAGE_NAME}:${GITHUB_SHA} .

 - name: Publish ZPM image to Google Container Registry
 run: |
 docker push
${GCR_LOCATION}/${PROJECT_ID}/${IMAGE_NAME}:${GITHUB_SHA}

 gke-provisioner:
 # Inspired by:
 ## https://www.terraform.io/docs/github-actions/getting-started.html
 ## https://github.com/hashicorp/terraform-github-actions
 name: Provision GKE cluster
 runs-on: ubuntu-18.04
 steps:
 - name: Checkout

Page 8 of 16

mailto:setup-gcloud@master
https://www.terraform.io/docs/github-actions/getting-started.html
https://github.com/hashicorp/terraform-github-actions

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

 uses: actions/checkout@v2

 - name: Terraform init
 uses: hashicorp/terraform-github-actions@master
 with:
 tf_actions_version: 0.12.17
 tf_actions_subcommand: 'init'
 tf_actions_working_dir: 'terraform'

 - name: Terraform validate
 uses: hashicorp/terraform-github-actions@master
 with:
 tf_actions_version: 0.12.17
 tf_actions_subcommand: 'validate'
 tf_actions_working_dir: 'terraform'

 - name: Terraform plan
 uses: hashicorp/terraform-github-actions@master
 with:
 tf_actions_version: 0.12.17
 tf_actions_subcommand: 'plan'
 tf_actions_working_dir: 'terraform'

 - name: Terraform apply
 uses: hashicorp/terraform-github-actions@master
 with:
 tf_actions_version: 0.12.17
 tf_actions_subcommand: 'apply'
 tf_actions_working_dir: 'terraform'

 kubernetes-deploy:
 name: Deploy Kubernetes manifests to GKE cluster
 needs:
 - gcloud-setup-and-build-and-publish-to-GCR
 - gke-provisioner
 runs-on: ubuntu-18.04
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Replace placeholders with values in statefulset template
 working-directory: ./k8s/
 run: |
 cat statefulset.tpl |\

Page 9 of 16

mailto:terraform-github-actions@master
mailto:terraform-github-actions@master
mailto:terraform-github-actions@master
mailto:terraform-github-actions@master

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

 sed "s|DOCKER_REPO_NAME|${GCR_LOCATION}/${PROJECT_ID}/${IMAGE_
NAME}|" |\
 sed "s|DOCKER_IMAGE_TAG|${GITHUB_SHA}|" > statefulset.yaml
 cat statefulset.yaml

 - name: Setup gcloud cli
 uses: GoogleCloudPlatform/github-actions/setup-gcloud@master
 with:
 version: '275.0.0'
 service_account_key: ${{ secrets.SERVICE_ACCOUNT_KEY }}

 - name: Apply Kubernetes manifests
 working-directory: ./k8s/
 run: |
 gcloud container clusters get-credentials ${GKE_CLUSTER} --zone
${GKE_ZONE} --project ${PROJECT_ID}
 kubectl apply -f namespace.yaml
 kubectl apply -f service.yaml
 kubectl apply -f statefulset.yaml
 kubectl -n ${K8S_NAMESPACE} rollout status
statefulset/${STATEFULSET_NAME}

Before you push to a repository, you should take the terraform-code from the Terraform directory of github-gke-zpm-
registry repository, replace placeholders as noted in main.tf comment, and put it inside the terraform/ directory.
Remember that Terraform uses a remote bucket that should be initially created as noted in Automating GKE
creation on CircleCI builds article.

Also, Kubernetes-code should be taken from the K8S directory of github-gke-zpm-registry repository and put inside
the k8s/ directory. These code sources were omitted in this article to save space.

Then you can trigger a deploy:
$ cd <root_repo_dir>/
$ git add .github/workflow/workflow.yaml k8s/ terraform/
$ git commit -m “Add GitHub Actions deploy”
$ git push

After pushing the changes to our forked ZPM repository, we can take a look at the implementation of the steps we
described:

Page 10 of 16

mailto:setup-gcloud@master
https://github.com/intersystems-community/github-gke-zpm-registry/tree/master/terraform
https://github.com/intersystems-community/github-gke-zpm-registry/tree/master/terraform
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://github.com/intersystems-community/github-gke-zpm-registry/tree/master/k8s

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

There are only two jobs so far. The third, "kubernetes-deploy", will appear after the completion of those on which it
depends.
Note that building and publishing Docker images requires some time:

And you can check the result in the GCR console:

Page 11 of 16

https://cloud.google.com/container-registry/docs

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

The "Provision GKE cluster" job takes longer the first time as it creates the GKE cluster. You’ll see a waiting screen
for a few minutes:

But, finally, it finishes and you can be happy:

The Kubernetes resources are also happy:
$ gcloud container clusters get-credentials <CLUSTER_NAME> --zone
<GKE_ZONE> --project <PROJECT_ID>
$ kubectl get nodes

Page 12 of 16

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

NAME STATUS ROLES AGE VERSION
gke-dev-cluster-dev-cluster-node-pool-98cef283-dfq2 Ready <none> 8m51s
v1.13.11-gke.23

$ kubectl -n iris get po
NAME READY STATUS RESTARTS AGE
zpm-registry-0 1/1 Running 0 8m25s

It's a good idea to wait for Running status, then check other things:
$ kubectl -n iris get sts
NAME READY AGE
zpm-registry 1/1 8m25s

$ kubectl -n iris get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
zpm-registry LoadBalancer 10.23.248.234 104.199.6.32 52773:32725/TCP
8m29s

Even the disks are happy:
$ kubectl get pv -oyaml | grep pdName
 pdName: gke-dev-cluster-5fe434-pvc-5db4f5ed-4055-11ea-a6ab-42010af00286

And happiest of all is the ZPM registry (we took the External-IP output of "kubectl -n iris get svc"):
$ curl -u _system:SYS 104.199.6.32:52773/registry/_ping
{"message":"ping"}

Handling the login/password over HTTP is a shame, but I hope to do something about this in future articles.

By the way, you can find more information about endpoints in the source code: see the XData UrlMap section.

We can test this repo by pushing a package to it. There’s a cool ability to push just a direct GitHub link. Let’s try
with the math library for InterSystems ObjectScript. Run this from your local machine:

Page 13 of 16

https://github.com/intersystems-community/zpm-registry/blob/master/src/cls/ZPM/Registry.cls
https://openexchange.intersystems.com/package/ObjectScript-Math

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

$ curl -XGET -u _system:SYS 104.199.6.32:52773/registry/packages/-/all
[]
$ curl -i -XPOST -u _system:SYS -H "Content-Type: application/json" -d
'{"repository":"https://github.com/psteiwer/ObjectScript-Math"}'
'http://104.199.6.32:52773/registry/package'
HTTP/1.1 200 OK
$ curl -XGET -u _system:SYS 104.199.6.32:52773/registry/packages/-/all
[{"name":"objectscript-math","versions":["0.0.4"]}]

Restart a pod to be sure that the data is in place:
$ kubectl -n iris scale --replicas=0 sts zpm-registry
$ kubectl -n iris scale --replicas=1 sts zpm-registry
$ kubectl -n iris get po -w

Wait for a running pod. Then what I hope you’ll see:
$ curl -XGET -u _system:SYS 104.199.6.32:52773/registry/packages/-/all
[{"name":"objectscript-math","versions":["0.0.4"]}]

Let’s install this math package from your repository on your local IRIS instance. Choose the one where the ZPM
client is already installed:
$ docker exec -it $(docker run -d intersystemsdc/iris-
community:2019.4.0.383.0-zpm) bash

$ iris session iris
USER>write ##class(Math.Math).Factorial(5)
<CLASS DOES NOT EXIST> *Math.Math

USER>zpm
zpm: USER>list

zpm: USER>repo -list
registry
 Source: https://pm.community.intersystems.com
 Enabled? Yes
 Available? Yes
 Use for Snapshots? Yes
 Use for Prereleases? Yes

zpm: USER>repo -n registry -r -url http://104.199.6.32:52773/registry/ -user
_system -pass SYS

Page 14 of 16

https://github.com/psteiwer/ObjectScript-Math
http://104.199.6.32:52773/registry/package
https://pm.community.intersystems.com
http://104.199.6.32:52773/registry/

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

zpm: USER>repo -list
registry
 Source: http://104.199.6.32:52773/registry/
 Enabled? Yes
 Available? Yes
 Use for Snapshots? Yes
 Use for Prereleases? Yes
 Username: _system
 Password: <set>

zpm: USER>repo -list-modules -n registry
objectscript-math 0.0.4

zpm: USER>install objectscript-math
[objectscript-math] Reload START
...
[objectscript-math] Activate SUCCESS

zpm: USER>quit

USER>write ##class(Math.Math).Factorial(5)
120

Congratulations!
Don’t forget to remove the GKE cluster when you don’t need it anymore:

Conclusion

There are not many references to GitHub Actions within the InterSystems community. I found only one mention
from guru @mdaimor. But GitHub Actions can be quite useful for developers storing code on GitHub. Native
actions supported only in JavaScript, but this could be dictated by a desire to describe steps in code, which most
developers are familiar with. In any case, you can use Docker actions if you don’t know JavaScript.

Regarding the GitHub Actions UI, along the way I discovered a couple of inconveniences that you should be aware
of:

Page 15 of 16

http://104.199.6.32:52773/registry/
https://community.intersystems.com/post/behind-scene-isc-tar-project-and-story-about-continuous-integration-using-github-actions
https://community.intersystems.com/user/dmitriy-maslennikov

Deploying InterSystems IRIS solution on GKE Using GitHub Actions
Published on InterSystems Developer Community (https://community.intersystems.com)

You cannot check what is going on until a job step is finished. It’s not clickable, like in the step "Terraform
apply".
While you can rerun a failed workflow, I didn’t find a way to rerun a successful workflow.

A workaround for the second point is to use the command:
$ git commit --allow-empty -m "trigger GitHub actions"

You can learn more about this in the StackOverflow question How do I re-run Github Actions?

#Best Practices #Cloud #Containerization #DevOps #Docker #GitHub #Kubernetes #InterSystems IRIS #Open
Exchange
Check the related application on InterSystems Open Exchange

 Source
URL:https://community.intersystems.com/post/deploying-intersystems-iris-solution-gke-using-github-actions

Page 16 of 16

https://stackoverflow.com/questions/56435547/how-do-i-re-run-github-actions
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/github
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/open-exchange
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/zpm-registry
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gke-using-github-actions

