
Python JDBC connection into IRIS database - a quick note
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Zhong Li · Jan 27, 2020 7m read

Python JDBC connection into IRIS database - a quick note
Keywords: Python, JDBC, SQL, IRIS, Jupyter Notebook, Pandas, Numpy, and Machine Learning

1. Purpose
This is another 5-minute simple note on invoking the IRIS JDBC driver via Python 3 within i.e. a Jupyter Notebook,
to read from and write data into an IRIS database instance via SQL syntax, for demo purpose.

Last year I touched on a brief note on Python binding into a Cache database (section 4.7) instance. Now it might
be time to recap some options and discussions on using Python to hook into an IRIS database, to read its data into
a Pandas dataframe and a NumPy array for normal analysis, then to write some pre-processed or normalised data
back into IRIS ready for further ML/DL pipelines.

Immediately there would be a few quick options popping out on top of the head:

1. ODBC: How about PyODBC for Python 3 and native SQL?
2. JDBC: How about JayDeBeApi for Pyhton 3 and native SQL?
3. Spark: How about the PySpark and SQL?
4. Python Native API for IRIS: beyond the previous Python Binding for Cache?
5. IPtyhon Magic SQL %%sql? Could it work with IRIS yet?

 Any other options being missed here? I am interested in trying them too.

2. Scope
Shall we just start with a normal JDBC approach? We will recap on ODBC, Spark and Python Native API in next
brief note.

In Scope:

The following common components are touched in this quick demo:

Anaconda
Jupyter Notebook
Python 3
JayDeBeApi
JPyPe
Pandas
NumPy
An IRIS 2019.x instance

 Out of Scope:

The following will NOT be touched in this quick note - they are important, and can be addressed separately with
specific site solutions, deployments and services:

Page 1 of 6

https://community.intersystems.com/user/zhong-li-0
https://community.intersystems.com/post/deep-learning-demo-kit-python3-binding-healthshare-part-i
https://github.com/catherinedevlin/ipython-sql

Python JDBC connection into IRIS database - a quick note
Published on InterSystems Developer Community (https://community.intersystems.com)

Security end-2-end.
Non-functional performance etc.
Trouble-shooting and Support.
Licensing.

3. Demo

3.1 Run an IRIS instance:

I simply ran an IRIS 2019.4 container as a "remote" database server. You can use any IRIS instance to which you
have the right authorised access.

zhongli@UKM5530ZHONGLI MINGW64 /c/Program Files/Docker Toolbox
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d86be69a03ab quickml-demo "/iris-main" 3 days ago Up 3 days (healthy) 0.0.0.0:9091->51773/tcp,
0.0.0.0:9092->52773/tcp quickml

3.2 Anaconda and Jupyter Notebook:

 We will reuse the same setup approach as described here for Anaconda (section 4.1) and here for
Jupyter Notebook (section 4) in a laptop. Python 3.x is installed along with this step.

3.3 Install JayDeBeApi and JPyPe:

I started my JupyterNotebook, then simply ran the following in its cells to set up a Python-to-JDBC/Java bridge:

 !conda install --yes -c conda-forge jaydebeapi

JayDeBeApi uses JPype 0.7 at the time of writing (Jan 2020) - it doesn't work due to a known bug, so had to be
downgraded to 0.6.3
!conda install --yes -c conda-forge JPype1=0.6.3 --force-reinstall

3.4 Connect into IRIS database via JDBC

There is an official JDBC into IRIS documentation here.

For Python SQL executions over JDBC , I used the following codes as an example. It connects into a data table
called "DataMining.IrisDataset" within "USER" namespace of this IRIS instance.
1. Set environment variables, if necessary
#import os
#os.environ['JAVA_HOME']='C:\Progra~1\Java\jdk1.8.0_241'
#os.environ['CLASSPATH'] = 'C:\interSystems\IRIS20194\dev\java\lib\JDK18\intersystems-jdbc-3.0.0.jar'
#os.environ['HADOOP_HOME']='C:\hadoop\bin' #winutil binary must be in Hadoop's Home
2. Get jdbc connection and cursor
import jaydebeapi
url = "jdbc:IRIS://192.168.99.101:9091/USER"
driver = 'com.intersystems.jdbc.IRISDriver'
user = "SUPERUSER"
password = "SYS"
#libx = "C:/InterSystems/IRIS20194/dev/java/lib/JDK18"
jarfile = "C:/InterSystems/IRIS20194/dev/java/lib/JDK18/intersystems-jdbc-3.0.0.jar"

Page 2 of 6

https://community.intersystems.com/post/deep-learning-demo-kit-python3-binding-healthshare-part-i
https://community.intersystems.com/post/run-deep-learning-demo-python3-binding-healthshare-part-ii
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_jdbc

Python JDBC connection into IRIS database - a quick note
Published on InterSystems Developer Community (https://community.intersystems.com)

conn = jaydebeapi.connect(driver, url, [user, password], jarfile)
curs = conn.cursor()
3. specify the source data table
dataTable = 'DataMining.IrisDataset'

4. Get the result and display
curs.execute("select TOP 20 * from %s" % dataTable)
result = curs.fetchall()
print("Total records: " + str(len(result)))
for i in range(len(result)):
 print(result[i])
5. CLose and clean - I keep them open for next accesses.
#curs.close()
#conn.close()

Total records: 150
(1, 1.4, 0.2, 5.1, 3.5, 'Iris-setosa')
(2, 1.4, 0.2, 4.9, 3.0, 'Iris-setosa')
(3, 1.3, 0.2, 4.7, 3.2, 'Iris-setosa')
... ...
(49, 1.5, 0.2, 5.3, 3.7, 'Iris-setosa')
(50, 1.4, 0.2, 5.0, 3.3, 'Iris-setosa')
(51, 4.7, 1.4, 7.0, 3.2, 'Iris-versicolor')
... ...
(145, 5.7, 2.5, 6.7, 3.3, 'Iris-virginica')
... ...
(148, 5.2, 2.0, 6.5, 3.0, 'Iris-virginica')
(149, 5.4, 2.3, 6.2, 3.4, 'Iris-virginica')
(150, 5.1, 1.8, 5.9, 3.0, 'Iris-virginica')

Now we tested that Python on JDBC was working. The following is just a bit of routine data analysis and
preprocessing for usual ML pipelines that we might touch on again and again for later demos and comparisons
hence is attached for conveniences.

3.5 Convert SQL results to Pandas DataFrame then NumPy Array

Install Pandas and NumPy packages via Conda if they are not installed yet, similar to section 3.3 above.

Then ran the following as an example:
transform SQL results "sqlData"to Pandas dataframe "df", then further to NumPy array "arrayN" for further ML
pipelines
import pandas as pd
sqlData = "SELECT * from DataMining.IrisDataset"
df= pd.io.sql.read_sql(sqlData, conn)
df = df.drop('ID', 1)
df = df[['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']]
set the labels to 0, 1, 2, for NumPy matrix
df.replace('Iris-setosa', 0, inplace=True)
df.replace('Iris-versicolor', 1, inplace=True)
df.replace('Iris-virginica', 2, inplace=True)
turn dataframe into Numpy array
arrayN = df.to_numpy()
6. CLose and clean - if connection is not needed anymore?

Page 3 of 6

Python JDBC connection into IRIS database - a quick note
Published on InterSystems Developer Community (https://community.intersystems.com)

#curs.close()
#conn.close()

Let's have a routine peek into current data:
df.head(5)

df.describe()

Now we got a DataFrame, and a normalised NumPy array from a source data table to our disposal.

Certainly, here we can try various routine analysis that a ML person would start with, as below, in Python to
replace R as the link here?

Page 4 of 6

http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.html

Python JDBC connection into IRIS database - a quick note
Published on InterSystems Developer Community (https://community.intersystems.com)

Data source is quoted from here

3.6 Split data and write back into IRIS database via SQL:

Certainly we can split the data into a Training and a Validation or Test set, as usual, then write them back into
temporary database tables, for some exciting on-coming ML features of IRIS:
import numpy as np
from matplotlib import pyplot
from sklearn.model_selection import train_test_split
keep e.g. 20% = 30 rows as test data; trained on another e.g. 80% = 120 rows
X = arrayN[:,0:4]
y = arrayN[:,4]
X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1, shuffle=True)
make 80% of random rows into a Train set
labels1 = np.reshape(Y_train,(120,1))
train = np.concatenate([X_train, labels1],axis=-1)
make 20% of left rows into Test set
lTest1 = np.reshape(Y_validation,(30,1))
test = np.concatenate([X_validation, lTest1],axis=-1)
write the train data set into a Pandas frame
dfTrain = pd.DataFrame({'SepalLength':train[:, 0], 'SepalWidth':train[:, 1], 'PetalLength':train[:, 2], 'PetalWidth':train[:,
3], 'Species':train[:, 4]})
dfTrain['Species'].replace(0, 'Iris-setosa', inplace=True)
dfTrain['Species'].replace(1, 'Iris-versicolor', inplace=True)
dfTrain['Species'].replace(2, 'Iris-virginica', inplace=True)
write the test data into another Pandas frame
dfTest = pd.DataFrame({'SepalLength':test[:, 0], 'SepalWidth':test[:, 1], 'PetalLength':test[:, 2], 'PetalWidth':test[:, 3],
'Species':test[:, 4]})
dfTest['Species'].replace(0, 'Iris-setosa', inplace=True)
dfTest['Species'].replace(1, 'Iris-versicolor', inplace=True)
dfTest['Species'].replace(2, 'Iris-virginica', inplace=True)
3. specify temp table names
#dataTable = 'DataMining.IrisDataset'
dtTrain = 'TRAIN02'
dtTest = "TEST02"
4. Create 2 temporary tables - you can try drop tables then re-create them every time
curs.execute("Create Table %s (%s DOUBLE, %s DOUBLE, %s DOUBLE, %s DOUBLE, %s VARCHAR(100))" %
(dtTrain, dfTrain.columns[0], dfTrain.columns[1], dfTrain.columns[2], dfTrain.columns[3], dfTrain.columns[4]))
curs.execute("Create Table %s (%s DOUBLE, %s DOUBLE, %s DOUBLE, %s DOUBLE, %s VARCHAR(100))" %
(dtTest, dfTest.columns[0], dfTest.columns[1], dfTest.columns[2], dfTest.columns[3], dfTest.columns[4]))

Page 5 of 6

https://www.datacamp.com/community/tutorials/machine-learning-in-r

Python JDBC connection into IRIS database - a quick note
Published on InterSystems Developer Community (https://community.intersystems.com)

5. write Train set and Test set into the tales. You can try to delete old record then insert everytime.
curs.fast_executemany = True
curs.executemany("INSERT INTO %s (SepalLength, SepalWidth, PetalLength, PetalWidth, Species) VALUES (?,
?, ?, ? ,?)" % dtTrain,
 list(dfTrain.itertuples(index=False, name=None)))
curs.executemany("INSERT INTO %s (SepalLength, SepalWidth, PetalLength, PetalWidth, Species) VALUES (?,
?, ?, ? ,?)" % dtTest,
 list(dfTest.itertuples(index=False, name=None)))
6. CLose and clean - if connection is not needed anymore?
#curs.close()
#conn.close()

Now if we switch to IRIS Management Console, or Terminal SQL Console, we should see 2 temp tables created:
TRAIN02 with 120 rows and TEST02 with 30 rows.

I will have to stop here, as it's supposedly be a very brief quick note.

4. Caveats

The content above may be changed or refined.

5. Next
We will simply replace section 3.3 and 3.4 with PyODBC, PySPark and Python Native API for IRIS, unless anyone
wouldn't mind helping contribute a quick note as well - I will appreciate too.

#Best Practices #JDBC #Machine Learning #ODBC #Python #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/python-jdbc-connection-iris-database-quick-note

Page 6 of 6

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/jdbc
https://community.intersystems.com/tags/machine-learning
https://community.intersystems.com/tags/odbc
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/python-jdbc-connection-iris-database-quick-note

