
Robust Error Handling and Cleanup in ObjectScript
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Timothy Leavitt · Jan 15, 2020 9m read

Robust Error Handling and Cleanup in ObjectScript

Introduction and Motivation
A unit of ObjectScript code (a ClassMethod, say) may produce a variety of unexpected side effects by interacting
with parts of the system outside of its own scope and not properly cleaning up. As a non-exhaustive list, these
include:

Transactions
Locks
I/O devices
SQL cursors
System flags and settings
$Namespace
Temporary files

Use of these important language features without proper cleanup and defensive coding can lead to an application
that normally works correctly, but that may fail in unexpected and difficult-to-debug ways. It is critical for cleanup
code to behave correctly in all possible error cases, especially since error cases are likely to be missed in surface-
level testing. This post details several known pitfalls, and explains two patterns to accomplish robust error handling
and cleanup.

Semi-related shameless plug: want to be sure that you're testing all of your edge cases? Check out my Test
Coverage Tool on the Open Exchange!

Note: I originally published this content internally within InterSystems in June 2018. Posting it on the Developer
Community has been on my to-do list for a year and a half now. You know what they say...

Pitfalls to Avoid

Transactions

A natural and simplistic approach to transactions is to wrap the transaction in a try/catch block, with a TRollback in
the catch, as follows:

Try {
 TSTART
 // ... do stuff with data ...
 TCOMMIT
} Catch e {
 TROLLBACK
 // e.AsStatus(), e.Log(), etc.
}

In a vacuum, provided the code between TStart and TCommit throws exceptions rather than issuing Quit early
when an error occurs, this code is perfectly valid. However, it is risky for two reasons:

Page 1 of 6

https://community.intersystems.com/user/timothy-leavitt
https://openexchange.intersystems.com/package/Test-Coverage-Tool
https://openexchange.intersystems.com/package/Test-Coverage-Tool
https://natethesnake.com/

Robust Error Handling and Cleanup in ObjectScript
Published on InterSystems Developer Community (https://community.intersystems.com)

If another developer adds a "Quit" within the Try block, a transaction will be left open. Such a change would
be easy to miss in code review, especially if it is not obvious that there are transactions involved in the
current context.
If the method with this block is called from within an outer transaction, the TRollback will roll back all
transaction levels.

A better approach is to track the transaction level at the beginning of the method, and to rollback to that transaction
level at the end. For example:

Set tInitTLevel = $TLevel
Try {
 TSTART
 // ... do stuff with data ...
 // The following is fine now; tStatus does not need to be thrown as an exception.
 If $$$ISERR(tStatus) {
 Quit
 }
 // ... do more stuff with data ...
 TCOMMIT
} Catch e {
 // e.AsStatus(), e.Log(), etc.
}
While $TLevel > tInitTLevel {
 // Just roll back one transaction level at a time.
 TROLLBACK 1
}

Locks

Any code that uses incremental locks should also be sure to decrement the locks in cleanup code when they are
no longer needed; otherwise, such locks will be held until the process terminates. Locks should not leak outside a
method unless obtaining such a lock is a documented side effect of the method.

I/O Devices

Changes to the current I/O device (the $io special variable) similarly should not leak outside a method unless the
purpose of the method is to change the current device (e.g., enabling I/O redirection). When working with files, use
of the %Stream package is preferred over direct sequential file I/O using OPEN / USE / READ / CLOSE. In other
cases, where I/O devices must be used, care should be taken to restore the original device at the end of the
method. For example, the following code pattern is risky:

Method ReadFromDevice(pSomeOtherDevice As %String)
{
 Open pSomeOtherDevice:10
 Use pSomeOtherDevice
 Read x
 // ... do complicated things with X ...
 Close pSomeOtherDevice
}

If an exception is thrown before pSomeOtherDevice is closed, then $io will be left as pSomeOtherDevice; this is
likely to cause cascading failures. Furthermore, when the device is closed, $io is reset to the process's default
device, which may not be the same as the device prior to when the method was called.

Page 2 of 6

Robust Error Handling and Cleanup in ObjectScript
Published on InterSystems Developer Community (https://community.intersystems.com)

SQL Cursors

When using cursor-based SQL, the cursor must be closed in the event of any error. Failure to close the cursor may
result in resource leaks (according to the documentation). Also, in some cases if you run the code again and try to
open the cursor, you'll get an "already open" error (SQLCODE -101).

System Flags and Settings

Rarely, application code may need to modify process- or system-level flags - for example, many of these are
defined in %SYSTEM.Process and %SYSTEM.SQL. In all such cases, care should be taken to store the initial
value and restore it at the end of the method.

$Namespace

Code that changes namespace should always New $Namespace at the beginning to ensure that namespace
changes do not leak outside the scope of the method.

Temporary Files

Application code that creates temporary files, such as with %Library.File:TempFilename (which, on InterSystems
IRIS in particular, actually creates the file) should take care to also remove the temporary files when they are no
longer needed.

Recommended Pattern: Try-Catch (-Finally)
Many languages have a feature where a try/catch structure can also have a "finally" block that runs after the
try/catch is complete, whether an exception has occurred or not. ObjectScript does not, but it can be approximated.
A general pattern for this, demonstrating many of the possible problem cases, is:

ClassMethod MyRobustMethod(pFile As %String = "C:\foo\bar.txt") As %Status
{
 Set tSC = $$$OK
 Set tInitialTLevel = $TLevel
 Set tMyGlobalLocked = 0
 Set tDevice = $io
 Set tFileOpen = 0
 Set tCursorOpen = 0
 Set tOldSystemFlagValue = ""

 Try {
 // Lock a global, provided a lock can be obtained within 5 seconds.
 Lock +^MyGlobal(42):5
 If '$Test {
 $$$ThrowStatus($$$ERROR($$$GeneralError,"Couldn't lock ^MyGlobal(42)."))
 }
 Set tMyGlobalLocked = 1

 // Open a file
 Open pFile:"WNS":10
 If '$Test {
 $$$ThrowStatus($$$ERROR($$$GeneralError,"Couldn't open file "_pFile))
 }
 Set tFileOpen = 1

 // [cursor MyCursor declared]

Page 3 of 6

https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GSQL_esql#GSQL_esql_cursor_CLOSE
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Process
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.SQL
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25Library.File#METHOD_TempFilename

Robust Error Handling and Cleanup in ObjectScript
Published on InterSystems Developer Community (https://community.intersystems.com)

 &;SQL(OPEN MyCursor)
 Set tCursorOpen = 1

 // Set a system flag for this process.
 Set tOldSystemFlagValue = $System.Process.SetZEOF(1)

 // Do the important things...
 Use tFile

 TSTART

 // [... lots of important and complicated code that changes data here ...]

 // All done!

 TCOMMIT
 } Catch e {
 Set tSC = e.AsStatus()
 }

 // Finally {

 // Cleanup: system flag
 If (tOldSystemFlagValue '= "") {
 Do $System.Process.SetZEOF(tOldSystemFlagValue)
 }

 // Cleanup: device
 If tFileOpen {
 Close pFile
 // If pFile is the current device, the CLOSE command switches $io back to the
 process's default device,
 // which might not be the same as the value of $io was when the method was ca
lled.
 // To be extra sure:
 Use tDevice
 }

 // Cleanup: locks
 If tMyGlobalLocked {
 Lock -^MyGlobal(42)
 }

 // Cleanup: transactions
 // Roll back one level at a time up to our starting transaction level.
 While $TLevel > tInitialTLevel {
 TROLLBACK 1
 }

 // } // end "finally"
 Quit tSC
}

Note: in this approach, it is critical that "Quit" and not "Return" is used in the Try ... block; "Return" will bypass the
cleanup.

Recommended Pattern: Registered Objects and Destructors

Page 4 of 6

Robust Error Handling and Cleanup in ObjectScript
Published on InterSystems Developer Community (https://community.intersystems.com)

Sometimes, the cleanup code can get complicated. In such cases, it may make sense to facilitate reuse of the
cleanup code by encapsulating it in a registered object. System state is tracked when the object is initialized or
when methods of the object that change state are called, and reverted to its original value when the object goes out
of scope. Consider the following simple example, which manages transactions, the current namespace, and the
state of $System.Process.SetZEOF:

/// When an instance of this class goes out of scope, the namespace, transaction leve
l, and value of $System.Process.SetZEOF() that were present when it was created are r
estored.
Class DC.Demo.ScopeManager Extends %RegisteredObject
{

Property InitialNamespace As %String [InitialExpression = {$Namespace}];

Property InitialTransactionLevel As %String [InitialExpression = {$TLevel}];

Property ZEOFSetting As %Boolean [InitialExpression = {$System.Process.SetZEOF()}];

Method SetZEOF(pValue As %Boolean)
{
 Set ..ZEOFSetting = $System.Process.SetZEOF(.pValue)
}

Method %OnClose() As %Status [Private, ServerOnly = 1]
{
 Set tSC = $$$OK

 Try {
 Set $Namespace = ..InitialNamespace
 } Catch e {
 Set tSC = $$$ADDSC(tSC,e.AsStatus())
 }

 Try {
 Do $System.Process.SetZEOF(..ZEOFSetting)
 } Catch e {
 Set tSC = $$$ADDSC(tSC,e.AsStatus())
 }

 Try {
 While $TLevel > ..InitialTransactionLevel {
 TROLLBACK 1
 }
 } Catch e {
 Set tSC = $$$ADDSC(tSC,e.AsStatus())
 }

 Quit tSC
}

}

The following class demonstrates how the above registered class could be used to simplify cleanup at the end of
the method:

Page 5 of 6

Robust Error Handling and Cleanup in ObjectScript
Published on InterSystems Developer Community (https://community.intersystems.com)

Class DC.Demo.Driver
{

ClassMethod Run()
{
 For tArgument = "good","bad" {
 Do ..LogState(tArgument,"before")
 Do ..DemoRobustMethod(tArgument)
 Do ..LogState(tArgument,"after")
 }
}

ClassMethod LogState(pArgument As %String, pWhen As %String)
{
 Write !,pWhen," calling DemoRobustMethod("_$$$QUOTE(pArgument)_"):"
 Write !,$c(9),"$Namespace=",$Namespace
 Write !,$c(9),"$TLevel=",$TLevel
 Write !,$c(9),"$System.Process.SetZEOF()=",$System.Process.SetZEOF()
}

ClassMethod DemoRobustMethod(pArgument As %String)
{
 Set tScopeManager = ##class(DC.Demo.ScopeManager).%New()

 Set $Namespace = "%SYS"
 TSTART
 Do tScopeManager.SetZEOF(1)
 If (pArgument = "bad") {
 // Normally, this would be a big problem. In this case, because of tScopeMana
ger, it isn't.
 Quit
 }
 TCOMMIT
}

}

#Best Practices #Error Handling #ObjectScript #Caché #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/robust-error-handling-and-cleanup-objectscript

Page 6 of 6

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/error-handling
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/robust-error-handling-and-cleanup-objectscript

