
Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mikhail Khomenko · Jan 13, 2020 16m read
 Open Exchange

Automating GKE creation on CircleCI builds
Last time we launched an IRIS application in the Google Cloud using its GKE service.

And, although creating a cluster manually (or through gcloud) is easy, the modern Infrastructure-as-Code (IaC)
approach advises that the description of the Kubernetes cluster should be stored in the repository as code as well.
How to write this code is determined by the tool that’s used for IaC.

In the case of Google Cloud, there are several options, among them Deployment Manager and Terraform. Opinions
are divided as to which is better: if you want to learn more, read this Reddit thread Opinions on Terraform vs.
Deployment Manager? and the Medium article Comparing GCP Deployment Manager and Terraform.

For this article we’ll choose Terraform, since it’s less tied to a specific vendor and you can use your IaC with
different cloud providers.

We’ll assume you’ve read the earlier article and already have a Google account, and that you’ve created a project
named “Development,” as in the previous article. In this article, its ID is shown as <PROJECT_ID>. In the examples
below, change it to the ID of your own project.

Keep in mind that Google isn’t free, although it has a free tier. Be sure to control your expenses.

We’ll also assume that you’ve already forked the original repository. We’ll call this fork “my-objectscript-rest-docker-
template” and refer to its root directory as “<root_repo_dir>” throughout this article.

All code samples are stored in this repo to simplify copying and pasting.

The following diagram depicts the whole deployment process in one picture:

Page 1 of 14

https://community.intersystems.com/user/mikhail-khomenko
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster
https://martinfowler.com/bliki/InfrastructureAsCode.html
https://martinfowler.com/bliki/InfrastructureAsCode.html
https://cloud.google.com/solutions/infrastructure-as-code/#cards
https://cloud.google.com/deployment-manager/docs/
https://www.terraform.io/
https://www.reddit.com/r/googlecloud/comments/9nzchm/opinions_on_terraform_vs_deployment_manager/
https://www.reddit.com/r/googlecloud/comments/9nzchm/opinions_on_terraform_vs_deployment_manager/
https://medium.com/@kari.marttila/comparing-gcp-deployment-manager-and-terraform-3bc6e1b3aa2d
https://console.cloud.google.com/
https://support.google.com/googleapi/answer/7014113?hl=en
https://cloud.google.com/free/
https://cloud.google.com/billing/docs/
https://github.com/intersystems-community/objectscript-rest-docker-template
https://github.com/intersystems-community/gke-terraform-circleci-objectscript-rest-docker-template

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

So, let's install the latest version of Terraform at the time of writing:
$ terraform version
Terraform v0.12.17

The version is important here, because many examples on the Internet use earlier versions, and 0.12 brought
many changes.

We want Terraform to perform certain actions (use certain APIs) in our GCP account. To enable this, create a
Service Account with the name 'terraform', and enable the Kubernetes Engine API. Don’t worry about how we’re
going to achieve this ̶ just read further and your questions will be addressed.

Let's try an example with the gcloud utility, although we could also use the Web Console.

We're going to use a couple different commands in the following examples. See the following documentation topics
for more details on these commands and features.

gcloud iam service-accounts create
Granting roles to a service account for specific resources
gcloud iam service-accounts keys create
Enabling an API in your Google Cloud project

Now let's walk through the example.
$ gcloud init

Because we worked with gcloud in the previous article, we won’t discuss all of the setup details here. For this
example, run the following commands:
$ cd <root_repo_dir>
$ mkdir terraform; cd terraform
$ gcloud iam service-accounts create terraform --description "Terraform" --display-
name "terraform"

Now let's add a few roles to the terraform service account besides “Kubernetes Engine Admin” (container.admin).
These roles will be useful to us in the future.
$ gcloud projects add-iam-policy-binding <PROJECT_ID> \
 --member serviceAccount:terraform@<PROJECT_ID>.iam.gserviceaccount.com
\
 --role roles/container.admin
$ gcloud projects add-iam-policy-binding <PROJECT_ID> \
 --member serviceAccount:terraform@<PROJECT_ID>.iam.gserviceaccount.com
\
 --role roles/iam.serviceAccountUser

$ gcloud projects add-iam-policy-binding <PROJECT_ID> \
 --member serviceAccount:terraform@<PROJECT_ID>.iam.gserviceaccount.com
\

Page 2 of 14

https://learn.hashicorp.com/terraform/getting-started/install.html
https://www.hashicorp.com/blog/announcing-terraform-0-12/
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/sdk/gcloud/
https://console.cloud.google.com/iam-admin/serviceaccounts
https://cloud.google.com/iam/docs/creating-managing-service-accounts#iam-service-accounts-create-gcloud
https://cloud.google.com/iam/docs/creating-managing-service-accounts#iam-service-accounts-create-gcloud
https://cloud.google.com/iam/docs/granting-roles-to-service-accounts#granting_access_to_a_service_account_for_a_resource
https://cloud.google.com/iam/docs/creating-managing-service-account-keys#iam-service-account-keys-create-gcloud
https://cloud.google.com/endpoints/docs/openapi/enable-api
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 --role roles/compute.viewer

$ gcloud projects add-iam-policy-binding <PROJECT_ID> \
 --member serviceAccount:terraform@<PROJECT_ID>.iam.gserviceaccount.com
\
 --role roles/storage.admin

$ gcloud iam service-accounts keys create account.json \
--iam-account terraform@<PROJECT_ID>.iam.gserviceaccount.com

Note that the last entry creates your account.json file. Be sure to keep this file secret.
$ gcloud projects list
$ gcloud config set project <PROJECT_ID>
$ gcloud services list --available | grep 'Kubernetes Engine'
$ gcloud services enable container.googleapis.com
$ gcloud services list --enabled | grep 'Kubernetes Engine'
container.googleapis.com Kubernetes Engine API

Next, let’s describe the GKE cluster in Terraform’s HCL language. Note that we use several placeholders here;
replace them with your values:

Placeholder Meaning Example
 <PROJECT_ID> GCP project ID possible-symbol-254507
 <BUCKET_NAME> Storage for Terraform state/lock̶should be unique circleci-gke-terraform-demo
 <REGION> Region where resources will be created europe-west1
 <LOCATION> Zone where resources will be created europe-west1-b
 <CLUSTER_NAME> GKE cluster name dev-cluster
 <NODES_POOL_NAME> GKE worker nodes pool name dev-cluster-node-pool

Here’s the HCL configuration for the cluster in practice:
$ cat main.tf
terraform {
 required_version = "~> 0.12"
 backend "gcs" {
 bucket = "<BUCKET_NAME>"
 prefix = "terraform/state"
 credentials = "account.json"
 }
}
provider "google" {
 credentials = file("account.json")
 project = "<PROJECT_ID>"

Page 3 of 14

https://www.terraform.io/docs/glossary.html#hcl
https://cloud.google.com/storage/docs/naming
https://cloud.google.com/compute/docs/regions-zones/
https://cloud.google.com/compute/docs/regions-zones/

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 region = "<REGION>"
}

resource "google_container_cluster" "gke-cluster" {
 name = "<CLUSTER_NAME>"
 location = "<LOCATION>"
 remove_default_node_pool = true
 # In regional cluster (location is region, not zone)
 # this is a number of nodes per zone
 initial_node_count = 1
}

resource "google_container_node_pool" "preemptible_node_pool" {
 name = "<NODES_POOL_NAME>"
 location = "<LOCATION>"
 cluster = google_container_cluster.gke-cluster.name
 # In regional cluster (location is region, not zone)
 # this is a number of nodes per zone
 node_count = 1

 node_config {
 preemptible = true
 machine_type = "n1-standard-1"
 oauth_scopes = [
 "storage-ro",
 "logging-write",
 "monitoring"
]
 }
}

To make sure the HCL code is in the proper format, Terraform provides a handy formatting command you can use:
$ terraform fmt

The code snippet shown above indicates that the created resources will be provided by Google, and the resources
themselves are google_container_cluster and google_container_node_pool, which we designate preemptible for
costs savings. We also choose to create our own pool instead of using the default.

Let’s focus briefly on the following setting:
terraform {
 required_version = "~> 0.12"
 backend "gcs" {
 Bucket = "<BUCKET_NAME>"

Page 4 of 14

https://www.terraform.io/docs/providers/google/guides/provider_reference.html
https://www.terraform.io/docs/providers/google/r/container_cluster.html
https://cloud.google.com/kubernetes-engine/docs/how-to/preemptible-vms
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 Prefix = "terraform/state"
 credentials = "account.json"
 }
}

Terraform writes everything it's done into the status file and then uses this file for other work. For convenient
sharing, it’s better to store this file somewhere in a remote place. A typical place is a Google Bucket.

Let's create this bucket. Use the name of your bucket instead of the placeholder <BUCKET_NAME>. Before bucket
creation let’s check if <BUCKET_NAME> is available as it has to be unique across all GCP:
$ gsutil acl get gs://<BUCKET_NAME>

Good answer:
BucketNotFoundException: 404 gs://<BUCKET_NAME> bucket does not exist

"Busy" answer means you have to choose another name:
AccessDeniedException: 403 <YOUR_ACCOUNT> does not have
storage.buckets.get access to <BUCKET_NAME>

Let’s also enable versioning, as Terraform recommends.
$ gsutil mb -l EU gs://<BUCKET_NAME>
$ gsutil versioning get gs://<BUCKET_NAME>
gs://<BUCKET_NAME>: Suspended

$ gsutil versioning set on gs://<BUCKET_NAME>

$ gsutil versioning get gs://<BUCKET_NAME>
gs://<BUCKET_NAME>: Enabled

Terraform is modular and needs to add a Google provider plugin to create something in GCP. We use the following
command to do this:
$ terraform init

Let's look at what Terraform is going to do to create a GKE cluster:
$ terraform plan -out dev-cluster.plan

The command output includes details of the plan. If you have no objections, let's implement this plan:
$ terraform apply dev-cluster.plan

Page 5 of 14

https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://www.terraform.io/docs/backends/types/gcs.html

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

By the way, to delete the resources created by Terraform, run this command from the <root_repo_dir>/terraform/
directory:
$ terraform destroy -auto-approve

Let’s leave the cluster as is for a while and move on. But first note that we don’t want to push everything into the
repository, so we’ll add several files to the exceptions:
$ cat <root_repo_dir>/.gitignore
.DS_Store
terraform/.terraform/
terraform/*.plan
terraform/*.json

Using Helm

In the previous article, we stored Kubernetes manifests as yaml files in the <root_repo_dir>/k8s/ directory, which we
then sent to the cluster using the "kubectl apply" command.

This time we'll try a different approach: using the Kubernetes package manager Helm, which has recently been
updated to version 3. Please, use version 3 or later because version 2 had Kubernetes-side security issues (see
Running Helm in production: Security best practices for details). First, we’ll pack the Kubernetes manifests from our
k8s/ directory into a Helm package, which is known as a chart. A Helm chart installed in Kubernetes is called a
release. In a minimal configuration, a chart will consist of several files:
$ mkdir <root_repo_dir>/helm; cd <root_repo_dir>/helm
$ tree <root_repo_dir>/helm/
helm/
├── Chart.yaml
├── templates
│ ├── deployment.yaml
│ ├── _helpers.tpl
│ └── service.yaml
└── values.yaml

Their purpose is well-described on the official site. The best practices for creating your own charts are described in
the The Chart Best Practices Guide in the Helm documentation.

Here’s what the contents of our files look like:
$ cat Chart.yaml
apiVersion: v2
name: iris-rest
version: 0.1.0
appVersion: 1.0.3
description: Helm for ObjectScript-REST-Docker-template application
sources:
- https://github.com/intersystems-community/objectscript-rest-docker-template
- https://github.com/intersystems-community/gke-terraform-circleci-objects...

Page 6 of 14

https://helm.sh/docs/
https://helm.sh/blog/helm-3-released/
https://engineering.bitnami.com/articles/running-helm-in-production.html
https://helm.sh/docs/topics/charts/#the-chart-file-structure
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/chart_best_practices/
https://github.com/intersystems-community/objectscript-rest-docker-template
https://github.com/intersystems-community/gke-terraform-circleci-objectscript-rest-docker-template

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

$ cat templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ template "iris-rest.name" . }}
 labels:
 app: {{ template "iris-rest.name" . }}
 chart: {{ template "iris-rest.chart" . }}
 release: {{ .Release.Name }}
 heritage: {{ .Release.Service }}
spec:
 replicas: {{ .Values.replicaCount }}
 strategy:
 {{- .Values.strategy | nindent 4 }}
 selector:
 matchLabels:
 app: {{ template "iris-rest.name" . }}
 release: {{ .Release.Name }}
 template:
 metadata:
 labels:
 app: {{ template "iris-rest.name" . }}
 release: {{ .Release.Name }}
 spec:
 containers:
 - image: {{ .Values.image.repository }}:{{ .Values.image.tag }}
 name: {{ template "iris-rest.name" . }}
 ports:
 - containerPort: {{ .Values.webPort.value }}
 name: {{ .Values.webPort.name }}

$ cat templates/service.yaml
{{- if .Values.service.enabled }}
apiVersion: v1
kind: Service
metadata:
 name: {{ .Values.service.name }}
 labels:
 app: {{ template "iris-rest.name" . }}
 chart: {{ template "iris-rest.chart" . }}

Page 7 of 14

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 release: {{ .Release.Name }}
 heritage: {{ .Release.Service }}
spec:
 selector:
 app: {{ template "iris-rest.name" . }}
 release: {{ .Release.Name }}
 ports:
 {{- range $key, $value := .Values.service.ports }}
 - name: {{ $key }}
{{ toYaml $value | indent 6 }}
 {{- end }}
 type: {{ .Values.service.type }}
 {{- if ne .Values.service.loadBalancerIP "" }}
 loadBalancerIP: {{ .Values.service.loadBalancerIP }}
 {{- end }}
{{- end }}

$ cat templates/_helpers.tpl
{{/* vim: set filetype=mustache: */}}
{{/*
Expand the name of the chart.
*/}}
{{- define "iris-rest.name" -}}
{{- default .Chart.Name .Values.nameOverride | trunc 63 | trimSuffix "-" -}}
{{- end -}}

{{/*
Create chart name and version as used by the chart label.
*/}}
{{- define "iris-rest.chart" -}}
{{- printf "%s-%s" .Chart.Name .Chart.Version | replace "+" "_" | trunc 63 |
trimSuffix "-" -}}
{{- end -}}

$ cat values.yaml
namespaceOverride: iris-rest
replicaCount: 1

strategy: |
 type: Recreate

image:
 repository: eu.gcr.io/iris-rest

Page 8 of 14

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 tag: v1

webPort:
 name: web
 value: 52773

service:
 enabled: true
 name: iris-rest
 type: LoadBalancer
 loadBalancerIP: ""
 ports:
 web:
 port: 52773
 targetPort: 52773
 protocol: TCP

To create the Helm charts, install the Helm client and the kubectl command-line utility.
$ helm version
version.BuildInfo{Version:"v3.0.1",
GitCommit:"7c22ef9ce89e0ebeb7125ba2ebf7d421f3e82ffa", GitTreeState:"clean",
GoVersion:"go1.13.4"}

Create a namespace called iris. It would be nice if this were created during the deployment, but so far this is not the
case.

First, add credentials for the cluster created by Terraform to kube-config:
$ gcloud container clusters get-credentials <CLUSTER_NAME> --zone
<LOCATION> --project <PROJECT_ID>
$ kubectl create ns iris

Confirm (without kicking off a real deploy) that Helm is going to create the following in Kubernetes:
$ cd <root_repo_dir>/helm
$ helm upgrade iris-rest \
 --install \
 . \
 --namespace iris \
 --debug \
 --dry-run

The output̶the Kubernetes manifests̶has been omitted for space here. If everything looks good, let’s deploy:

Page 9 of 14

https://github.com/helm/helm/releases/tag/v3.0.1
https://github.com/helm/helm/releases/tag/v3.0.1
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/helm/helm/issues/6794

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

$ helm upgrade iris-rest --install . --namespace iris

$ helm list -n iris --all
Iris-rest iris 1 2019-12-14 15:24:19.292227564 +0200 EET deployed iris-
rest-0.1.0 1.0.3

We see that Helm has deployed our application, but since we haven’t created the Docker image eu.gcr.io/iris-
rest:v1 yet, Kubernetes can’t pull it (ImagePullBackOff):
$ kubectl -n iris get po
NAME READY STATUS RESTARTS AGE
iris-rest-59b748c577-6cnrt 0/1 ImagePullBackOff 0 10m

Let’s finish with it for now:
$ helm delete iris-rest -n iris

The CircleCI Side

Now that we’ve tried out Terraform and the Helm client, let’s put them to use during the deployment process on the
CircleCI side.
$ cat <root_repo_dir>/.circleci/config.yml
version: 2.1
orbs:
 gcp-gcr: circleci/gcp-gcr@0.6.1

jobs:
 terraform:
 docker:
 # Terraform image version should be the same as when
 # you run terraform before from the local machine
 - image: hashicorp/terraform:0.12.17
 steps:
 - checkout
 - run:
 name: Create Service Account key file from environment variable
 working_directory: terraform
 command: echo ${TF_SERVICE_ACCOUNT_KEY} > account.json
 - run:
 name: Show Terraform version
 command: terraform version
 - run:
 name: Download required Terraform plugins
 working_directory: terraform

Page 10 of 14

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 command: terraform init
 - run:
 name: Validate Terraform configuration
 working_directory: terraform
 command: terraform validate
 - run:
 name: Create Terraform plan
 working_directory: terraform
 command: terraform plan -out /tmp/tf.plan
 - run:
 name: Run Terraform plan
 working_directory: terraform
 command: terraform apply /tmp/tf.plan
 k8s_deploy:
 docker:
 - image: kiwigrid/gcloud-kubectl-helm:3.0.1-272.0.0-218
 steps:
 - checkout
 - run:
 name: Authorize gcloud on GKE
 working_directory: helm
 command: |
 echo ${GCLOUD_SERVICE_KEY} > gcloud-service-key.json
 gcloud auth activate-service-account --key-file=gcloud-service-key.json
 gcloud container clusters get-credentials ${GKE_CLUSTER_NAME} --zone
${GOOGLE_COMPUTE_ZONE} --project ${GOOGLE_PROJECT_ID}
 - run:
 name: Wait a little until k8s worker nodes up
 command: sleep 30 # It’s a place for improvement
 - run:
 name: Create IRIS namespace if it doesn't exist
 command: kubectl get ns iris || kubectl create ns iris
 - run:
 name: Run Helm release deployment
 working_directory: helm
 command: |
 helm upgrade iris-rest \
 --install \
 . \
 --namespace iris \
 --wait \
 --timeout 300s \

Page 11 of 14

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

 --atomic \
 --set image.repository=eu.gcr.io/${GOOGLE_PROJECT_ID}/iris-rest \
 --set image.tag=${CIRCLE_SHA1}
 - run:
 name: Check Helm release status
 command: helm list --all-namespaces --all
 - run:
 name: Check Kubernetes resources status
 command: |
 kubectl -n iris get pods
 echo
 kubectl -n iris get services
workflows:
 main:
 jobs:
 - terraform
 - gcp-gcr/build-and-push-image:
 dockerfile: Dockerfile
 gcloud-service-key: GCLOUD_SERVICE_KEY
 google-compute-zone: GOOGLE_COMPUTE_ZONE
 google-project-id: GOOGLE_PROJECT_ID
 registry-url: eu.gcr.io
 image: iris-rest
 path: .
 tag: ${CIRCLE_SHA1}
 - k8s_deploy:
 requires:
 - terraform
 - gcp-gcr/build-and-push-image

You’ll need to add several environment variables to your project on CircleCI side:

Page 12 of 14

https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

The GCLOUD_SERVICE_KEY is the CircleCI service account key, and TF_SERVICE_ACCOUNT_KEY is the
Terraform service account key. Recall that the service account key is the whole content of account.json file.

Next, let’s push our changes to a repository:
$ cd <root_repo_dir>
$ git add .circleci/ helm/ terraform/ .gitignore
$ git commit -m "Add Terraform and Helm"
$ git push

The CircleCI UI dashboard should show that everything is ok:

Terraform is an idempotent tool and if the GKE cluster is present, the "terraform" job won’t do anything. If the
cluster doesn’t exist, it will be created before Kubernetes deployment.
Finally, let’s check IRIS availability:
$ gcloud container clusters get-credentials <CLUSTER_NAME> --zone
<LOCATION> --project <PROJECT_ID>

Page 13 of 14

Automating GKE creation on CircleCI builds
Published on InterSystems Developer Community (https://community.intersystems.com)

$ kubectl -n iris get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
Iris-rest LoadBalancer 10.23.249.42 34.76.130.11 52773:31603/TCP 53s

$ curl -XPOST -H "Content-Type: application/json" -u _system:SYS
34.76.130.11:52773/person/ -d '{"Name":"John Dou"}'

$ curl -XGET -u _system:SYS 34.76.130.11:52773/person/all
[{"Name":"John Dou"},]

Conclusion

Terraform and Helm are standard DevOps tools and should be fine integrated with IRIS deployment.

They do require some learning, but after some practice, they can really save you time and effort.

#Best Practices #Cloud #Containerization #DevOps #Docker #Google Cloud Platform (GCP) #Kubernetes
#InterSystems IRIS #Open Exchange
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/automating-gke-creation-circleci-builds

Page 14 of 14

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/google-cloud-platform-gcp
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://community.intersystems.com/post/automating-gke-creation-circleci-builds

