
Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mikhail Khomenko · Dec 23, 2019 12m read
 Open Exchange

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Last time we deployed a simple IRIS application to the Google Cloud. Now we’re going to deploy the same project
to Amazon Web Services using its Elastic Kubernetes Service (EKS).

We assume you’ve already forked the IRIS project to your own private repository. It’s called <username>/my-
objectscript-rest-docker-template in this article. <root_repo_dir> is its root directory.

Before getting started, install the AWS command-line interface and, for Kubernetes cluster creation, eksctl, a
simple CLI utility. For AWS you can try to use aws2, but you’ll need to set aws2 usage in kube config file as
described here.

AWS EKS

Like AWS resources in general, EKS is not free. But you can create a free-tier account to play with AWS features.
Keep in mind, though, that not everything you want to play with is included in the free tier. So, to manage your
current budget and understand the financial issues, read this and this.

We’ll assume you already have an AWS account and root access to it, and that you don’t use this root access but
have created a user with admin permissions. You’ll need to put the access key and secret key of this user into the
AWS credentials file under the [dev] profile (or whatever you choose to name the profile):
$ cat ~/.aws/credentials
[dev]
aws_access_key_id = ABCDEFGHIJKLMNOPQRST
aws_secret_access_key =
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ1234

We’re going to create resources in the AWS “eu-west-1” region, but you should choose the region closest to your
location and replace “eu-west-1” by your region everywhere below in the text.

By the way, all needed files (.circleci/, eks/, k8s/) are also stored here to simplify copying and pasting.

All required EKS resources will be created from scratch. You’ll find the Amazon EKS Workshop to be a good
resource to get an initial impression.

Now let’s check our access to AWS (we’ve used a dummy account here):
$ export AWS_PROFILE=dev

$ aws sts get-caller-identity
{
 "Account": "012345678910",
 "UserId": " ABCDEFGHIJKLMNOPQRSTU",
 "Arn": "arn:aws:iam::012345678910:user/FirstName.LastName"

Page 1 of 11

https://community.intersystems.com/user/mikhail-khomenko
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://docs.aws.amazon.com/eks/index.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://eksctl.io/introduction/#installation
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://github.com/weaveworks/eksctl/issues/1562
https://aws.amazon.com/pricing/
https://aws.amazon.com/eks/pricing/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?trk=gs_card
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://github.com/intersystems-community/eks-circleci-objectscript-rest-docker-template
https://eksworkshop.com/
https://tel:012345678910

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

}

$ eksctl version
[�] version.Info{BuiltAt:"", GitCommit:"", GitTag:"0.10.2"}

We could run “eksctl create cluster <cluster_name> --region eu-west-1 ” now, relying on the fact that all the default
settings are good for us, or we can manage our own settings by creating a configuration file and using it.

The latter is preferable because it allows you to store such a file in a version control system (VCS). Examples of
configurations can be found here. After reading about the different settings here, let’s try to create our own
configuration:

$ mkdir <root_repo_dir>/eks; cd <root_repo_dir>/eks

$ cat cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: dev-cluster
 region: eu-west-1
 version: '1.14'

vpc:
 cidr: 10.42.0.0/16
 nat:
 gateway: Single
 clusterEndpoints:
 publicAccess: true
 privateAccess: false

nodeGroups:
 - name: ng-1
 amiFamily: AmazonLinux2
 ami: ami-059c6874350e63ca9 # AMI is specific for a region
 instanceType: t2.medium
 desiredCapacity: 1
 minSize: 1
 maxSize: 1

 # Worker nodes won't have an access FROM the Internet
 # But have an access TO the Internet through NAT-gateway
 privateNetworking: true

Page 2 of 11

https://github.com/weaveworks/eksctl/tree/master/examples
https://eksctl.io/usage/schema/

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

 # We don't need to SSH to nodes for demo
 ssh:
 allow: false

 # Labels are Kubernetes labels, shown when 'kubectl get nodes --show-labels'
 labels:
 role: eks-demo
 # Tags are AWS tags, shown in 'Tags' tab on AWS console'
 tags:
 role: eks-demo

CloudWatch logging is disabled by default to save money
Mentioned here just to show a way to manage it
#cloudWatch:
clusterLogging:
enableTypes: []

Note that "nodeGroups.desiredCapacity = 1" would make no sense in a production environment, but it’s fine for our
demo.
Also note that AMI images could differ between regions. Look for "amazon-eks-node-1.14" and choose one of the
latest:

Now let’s create the cluster̶the control plane and worker nodes:
$ eksctl create cluster -f cluster.yaml

Page 3 of 11

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

By the way, when you no longer need a cluster, you can use the following to delete it:
$ eksctl delete cluster --name dev-cluster --region eu-west-1 --wait

Creating a cluster takes about 15 minutes. During this time you can look at the eksctl output:

You can also view the CloudFormation console, which will have two stacks. You can drill down into each one and
look at the Resources tab to see exactly what will be created, and at the Events tab to check the current state of
the resources creation.

The cluster was successfully created, although you can see in the eksctl output that we had difficulties connecting
to it: "unable to use kubectl with the EKS cluster".

Page 4 of 11

https://console.aws.amazon.com/cloudformation

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's fix this by installing the aws-iam-authenticator (IAM) and using it to create a kube context:
$ which aws-iam-authenticator
/usr/local/bin/aws-iam-authenticator

$ aws eks update-kubeconfig --name dev-cluster --region eu-west-1

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-10-42-140-98.eu-west-1.compute.internal Ready <none> 1m
v1.14.7-eks-1861c5

It should work now, but we created a cluster with a user who has administrator rights. For the regular deployment
process from CircleCI, it’s better to create a special AWS user, named, in this case, CircleCI, with only
programmatic access and the following policies attached:

The first policy is built into AWS, so you only need to select it. The second one should be created on your own.
Here is a creation process description. The policy “AmazonEKSDescribePolicy” should look like:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeCluster",
 "eks:ListClusters"
],
 "Resource": "*"
 }
]
}

Page 5 of 11

https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

After user creation, save the user’s access key and secret access key ̶ we’ll need them soon.

We also want to give this user rights within the Kubernetes cluster itself, as described in this article. In short, after
creating the EKS cluster, only the IAM user, creator, has access to it. To add our CircleCI user, we need to replace
default empty "mapUsers" section in the cluster AWS authentication settings (configmap aws-auth, 'data' section)
by the following lines using kubectl edit (use your own Account Id instead of ‘01234567890’):
$ kubectl -n kube-system edit configmap aws-auth
...
data:
...
 mapUsers: |
 - userarn: arn:aws:iam::01234567890:user/CircleCI
 username: circle-ci
 groups:
 - system:masters

We’ll use the Kubernetes manifests from the earlier article (see the “Google Cloud Prerequisites” section) with one
change: in the deployment image field we use placeholders. We’ll store those manifests in the <root_repo_dir>/k8s
directory. Note that the deployment file was renamed to deployment.tpl:
$ cat <root_repo_dir>/k8s/deployment.tpl
...
spec:
containers:
- image: DOCKER_REPO_NAME/iris-rest:DOCKER_IMAGE_TAG
...

CircleCI

The deployment process on the CircleCI side is similar to the process used for GKE:

Pull the repository
Build the Docker image
Authenticate with Amazon Cloud
Upload the image to Amazon Elastic Container Registry (ECR)
Run the container based on this image in AWS EKS

Like last time, we’ll take advantage of already created and tested CircleCI configuration templates: orbs.

aws-ecr orb for building an image and pushing it to ECR
aws-eks orb for AWS authentication
kubernetes orb for Kubernetes manifests deployment

Our deployment configuration looks like this:
$ cat <root_repo_dir>/.circleci/config.yml
version: 2.1
orbs:

Page 6 of 11

https://aws.amazon.com/premiumsupport/knowledge-center/amazon-eks-cluster-access/
https://github.com/fabric8io/kansible/blob/master/vendor/k8s.io/kubernetes/docs/user-guide/kubectl/kubectl_edit.md
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://circleci.com/docs/2.0/orb-intro/
https://circleci.com/orbs/registry/orb/circleci/aws-ecr
https://circleci.com/orbs/registry/orb/circleci/aws-eks
https://circleci.com/orbs/registry/orb/circleci/kubernetes

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

 aws-ecr: circleci/aws-ecr@6.5.0
 aws-eks: circleci/aws-eks@0.2.6
 kubernetes: circleci/kubernetes@0.10.1
jobs:
 deploy-application:
 executor: aws-eks/python3
 parameters:
 cluster-name:
 description: |
 Name of the EKS cluster
 type: string
 aws-region:
 description: |
 AWS region
 type: string
 account-url:
 description: |
 Docker AWS ECR repository url
 type: string
 tag:
 description: |
 Docker image tag
 type: string
 steps:
 - checkout
 - run:
 name: Replace placeholders with values in deployment template
 command: |
 cat k8s/deployment.tpl |\
 sed "s|DOCKER_REPO_NAME|<< parameters.account-url >>|" |\
 sed "s|DOCKER_IMAGE_TAG|<< parameters.tag >>|" > k8s/deployment.yaml; \
 cat k8s/deployment.yaml
 - aws-eks/update-kubeconfig-with-authenticator:
 cluster-name: << parameters.cluster-name >>
 install-kubectl: true
 aws-region: << parameters.aws-region >>
 - kubernetes/create-or-update-resource:
 action-type: apply
 resource-file-path: "k8s/namespace.yaml"
 show-kubectl-command: true
 - kubernetes/create-or-update-resource:
 action-type: apply

Page 7 of 11

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

 resource-file-path: "k8s/deployment.yaml"
 show-kubectl-command: true
 get-rollout-status: true
 resource-name: deployment/iris-rest
 namespace: iris
 - kubernetes/create-or-update-resource:
 action-type: apply
 resource-file-path: "k8s/service.yaml"
 show-kubectl-command: true
 namespace: iris
workflows:
 main:
 jobs:
 - aws-ecr/build-and-push-image:
 aws-access-key-id: AWS_ACCESS_KEY_ID
 aws-secret-access-key: AWS_SECRET_ACCESS_KEY
 region: AWS_REGION
 account-url: AWS_ECR_ACCOUNT_URL
 repo: iris-rest
 create-repo: true
 dockerfile: Dockerfile-zpm
 path: .
 tag: ${CIRCLE_SHA1}
 - deploy-application:
 cluster-name: dev-cluster
 aws-region: eu-west-1
 account-url: ${AWS_ECR_ACCOUNT_URL}
 tag: ${CIRCLE_SHA1}
 requires:
 - aws-ecr/build-and-push-image

The Workflows section contains a list of jobs, each of which can be either called from an orb, such as aws-ecr/build-
and-push-image, or defined directly in the configuration using “deploy-application”.

The following code means that the deploy-application job will be called only after the aws-ecr/build-and-push-image
job finishes:
requires:
- aws-ecr/build-and-push-image

The Jobs section contains a description of the deploy-application job, with a list of steps defined, including:

checkout, to pull from a Git repository

Page 8 of 11

https://circleci.com/docs/2.0/workflows/
https://circleci.com/orbs/registry/orb/circleci/aws-ecr#jobs-build-and-push-image
https://circleci.com/orbs/registry/orb/circleci/aws-ecr#jobs-build-and-push-image

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

run, to run a script that dynamically sets the Docker-image repository and tag
aws-eks/update-kubeconfig-with-authenticator, which uses aws-iam-authenticator to set up a connection to
Kubernetes
kubernetes/create-or-update-resource, which is used several times as a way to run “kubectl apply” from
CircleCI

We use variables and they, of course, should be defined in CircleCI on the “Environment variables” tab:

The following table shows the meaning of the variables used:

 AWS_ACCESS_KEY_ID Access key of CircleCI IAM user

 AWS_SECRET_ACCESS_KEY Secret key of CircleCI IAM user

 AWS_REGION eu-west-1, in this case

 AWS_ECR_ACCOUNT_URL
 URL of the AWS ECR Docker Registry, such
as 01234567890.dkr.ecr.eu-west-1.amazonaws.com

 where ‘01234567890’ is the account ID

Here’s how we trigger the deployment process:
$ git add .circleci/ eks/ k8s/
$ git commit -m “AWS EKS deployment”
$ git push

Page 9 of 11

https://github.com/kubernetes-sigs/aws-iam-authenticator
https://circleci.com/orbs/registry/orb/circleci/kubernetes#commands-create-or-update-resource
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Repositories.html

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

This will show the two jobs in this workflow:

Both jobs are clickable, and this allows you to see details of the steps taken.
Deployment takes several minutes. Once it completes, we can check the status of the Kubernetes resources and of
the IRIS application itself:

$ kubectl -n iris get pods -w # Ctrl+C to stop

$ kubectl -n iris get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
iris-rest LoadBalancer 172.20.190.211 a3de52988147a11eaaaff02ca6b647c2-66
3499201.eu-west-1.elb.amazonaws.com 52773:32573/TCP 15s

Allow several minutes to propagate the DNS-record. Until then you’ll receive a “Could not resolve host” error when
running curl:
$ curl -XPOST -H "Content-Type: application/json" -u _system:SYS a3de5298814
7a11eaaaff02ca6b647c2-663499201.eu-
west-1.elb.amazonaws.com:52773/person/ -d '{"Name":"John Dou"}'

$ curl -XGET -u _system:SYS a3de52988147a11eaaaff02ca6b647c2-663499201.
eu-west-1.elb.amazonaws.com:52773/person/all
[{"Name":"John Dou"},]

Wrapping up

At first glance, deployment to AWS EKS looks more complex than to GKE, but it’s not really much different. If your
organization uses AWS, you now know how to add Kubernetes to your stack.

Note that the EKS API was recently extended to support managed groups. These allow you to deploy the control
plane and the data plane as a whole, and they look promising. Moreover, Fargate, the AWS serverless compute
engine for containers, is now available.

Page 10 of 11

https://aws.amazon.com/blogs/containers/eks-managed-node-groups/
https://aws.amazon.com/blogs/aws/amazon-eks-on-aws-fargate-now-generally-available/

Deploying a Simple IRIS-Based Web Application Using Amazon EKS
Published on InterSystems Developer Community (https://community.intersystems.com)

Finally, a quick note about AWS ECR: don’t forget to set up a lifecycle policy for your images.

#AWS #Best Practices #Cloud #Containerization #DevOps #Docker #Kubernetes #InterSystems IRIS #Open
Exchange
Check the related application on InterSystems Open Exchange

 Source
URL:https://community.intersystems.com/post/deploying-simple-iris-based-web-application-using-amazon-eks

Page 11 of 11

https://docs.aws.amazon.com/AmazonECR/latest/userguide/LifecyclePolicies.html
https://community.intersystems.com/tags/aws
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/open-exchange
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/objectscript-rest-docker-template
https://community.intersystems.com/post/deploying-simple-iris-based-web-application-using-amazon-eks

