
Collecting Performance Data While Running Unit Tests
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Joel Solon · Oct 30, 2019 4m read

Collecting Performance Data While Running Unit Tests
A few years ago, I was teaching the basics of our %UnitTest framework during Caché Foundations class (now
called Developing Using InterSystems Objects and SQL). A student asked if it was possible to collect performance
statistics while running unit tests. A few weeks later, I added some additional code to the %UnitTest examples to
answer this question. I’m finally sharing it on the Community.

The %SYSTEM,Process class provides several metrics that you can collect for a process (other than Duration).

Duration
Lines Executed
Global References
System CPU Time
User CPU Time
Disk Read Time

To enable any unit test to collect these stats, create a subclass of %UnitTest.TestCase, and add properties.

 Class Performance.TestCase Extends %UnitTest.TestCase
{
Property Duration As %Time;
Property Lines As %Integer;
Property Globals As %Integer;
Property SystemCPUTime As %Integer;
Property UserCPUTime As %Integer;
Property DiskReadTime As %Integer;
}

 Any specific unit test class you create should inherit from your new subclass instead of %UnitTest.TestCase.

In the subclass, use OnBeforeOneTest() to initialize the stats collection for each unit test. For everything except
DiskReadTime, the code initializes the property with the current value.

 /// initialize performance stats
Method OnBeforeOneTest(testname As %String) As %Status
{
 // initialize with current values
 set ..Duration = $zh
 set ..Lines = $system.Process.LinesExecuted()
 set ..Globals = $system.Process.GlobalReferences()
 set ..SystemCPUTime = $piece(CPUTime, ",", 1)
 set ..UserCPUTime = $piece(CPUTime, ",", 2)
 // reset disk read time to 0 and start counting
 do $system.Process.ResetDiskReadTiming()
 do $system.Process.EnableDiskReadTiming()
 return $$$OK
}

Use OnAfterOneTest() to finalize the stats collection for each unit test. For everything except DiskReadTime, the
code subtracts the initial value from the current value.

Page 1 of 2

https://community.intersystems.com/user/joel-solon
https://www.intersystems.com/support-learning/learning-services/classroom-learning/course/developing-with-intersystems-objects-and-sql/

Collecting Performance Data While Running Unit Tests
Published on InterSystems Developer Community (https://community.intersystems.com)

 /// Finalize performance stats
/// This is where you could also add code to save the counters to a separate table for analysis.
Method OnAfterOneTest(testname As %String) As %Status
{
 set ..Duration = $zh - ..Duration
 set ..Lines = $system.Process.LinesExecuted() - ..Lines
 set ..Globals = $system.Process.GlobalReferences() - ..Globals
 set CPUTime = $system.Process.GetCPUTime()
 set ..SystemCPUTime = $piece(CPUTime, ",", 1) - ..SystemCPUTime
 set ..UserCPUTime = $piece(CPUTime, ",", 2) - ..UserCPUTime
 // get disk read time and stop counting
 set ..DiskReadTime = $system.Process.DiskReadMilliseconds()
 do $system.Process.DisableDiskReadTiming()
 // add message to unit test log
 set msg = "Performance: " _ "Duration: " _ ..Duration _
 ", Lines: " _ ..Lines _
 ", Globals: " _ ..Globals _
 ", System CPU Time: " _ (..SystemCPUTime / 1000) _
 ", User CPU Time: " _ (..UserCPUTime / 1000) _
 ", Disk Read Time: " _ (..DiskReadTime / 1000)
 do $$$LogMessage(msg)
 return $$$OK
}

There’s one more little trick. You may want to run your unit tests with or without collecting statistics. So, the code
where you are invoking your unit tests must take an argument (could be a %Boolean 1 or 0) and somehow pass
that in. The methods that actually run the tests (such as RunTest() or one of the other Run*() methods) take an
array as the 3rd argument, passed by reference. Here’s an example snippet:

 // create an array to hold the logging argument (1 or 0) and pass it by reference
 set p("logging") = logging
 do ##class(%UnitTest.Manager).RunTest(test, qualifiers, .p)

The value you pass in the array can be accessed in OnBeforeOneTest() and OnAfterOneTest(). Add this as the
first line in both methods:

 if (..Manager.UserFields.GetAt("logging") = 0) { return $$$OK }

That’s it! Looking forward to your questions, comments, and additional ideas.

#Best Practices #Code Snippet #Performance #Testing #Caché #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/collecting-performance-data-while-running-unit-tests

Page 2 of 2

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/code-snippet
https://community.intersystems.com/tags/performance
https://community.intersystems.com/tags/testing
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/collecting-performance-data-while-running-unit-tests

