
Frontier: An abstraction layer for rapid REST development: Part 5 - Errors
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Rubens Silva · Oct 8, 2019 2m read
 Open Exchange

Frontier: An abstraction layer for rapid REST development: Part 5 -
Errors
Hello again and welcome to the next tutorial on this series: Part 5 - Errors. Here we are going to learn how Frontier
handles unexpected errors and how we can force them.

1. Core concepts
Getting started
Creating a simple request
Query parameters
Aliasing query parameters
Changing output format
Rest query parameters
Inferring object instances
Using literal notation
Seamlessly mixing instances with literals
Returning streams

2. Handling payloads
How it works
Making it useful
Unmarshalling payloads into instances
Using the unmarshaller to EDIT an existing object

3. Using the SQL API
Creating a simple dynamic query
Overwriting the default container property
Using cached queries
Passing parameters to queries

4. Sharing data across router methods
5. Errors
6. Managing errors with Reporters

5. Errors
Most of abnormal errors will be captured and handled by the engine automatically, just like the example below:

ClassMethod ForceError() As %DynamicObject
{
 // This is undefined so it's expected to throw.
 return whoops
}

would return this:

{
 "error": {
 "internalCode": "",

Page 1 of 3

https://community.intersystems.com/user/rubens-silva-0
https://openexchange.intersystems.com/package/Frontier
https://openexchange.intersystems.com/package/Frontier

Frontier: An abstraction layer for rapid REST development: Part 5 - Errors
Published on InterSystems Developer Community (https://community.intersystems.com)

 "message": "Erro Caché: <UNDEFINED>zForceError+1^Frontier.Tutorial.Router.1 *whoo
ps"
 },
 "responseCode": 500
}

However there can have situations where some business rule must force an exception to happen, this can be
accomplished by using the contextual method ThrowException, which takes at least one argument, the error
message itself:

ClassMethod ForceError() As %DynamicObject
{
 return %frontier.ThrowException("Something happened.")
}

Which would return:

{
 "error": {
 "internalCode": 5001,
 "message": "Something happened."
 },
 "responseCode": 500
}

ThrowException always use status code 5001 (GeneralError) and also assume the HTTP Status 500 Internal Error,
but you can at least change the HTTP status by providing the second argument using one of the HTTP status
parameters defined on %CSP.REST.

ClassMethod ForceError() As %DynamicObject
{
 return %frontier.ThrowException("Something happened.", ..#HTTP404NOTFOUND)
}

This will return:

{
 "error": {
 "internalCode": 5001,
 "message": "Something happened."
 },
 "responseCode": 404
}

Notice that the responseCode is now 404 instead of 500. But not only that, the browser will also receive a 404 http
status.

NOTE: Remember that statuses (status codes) must always be thrown instead of returned, otherwise
Frontier will consider the value a response to be serialized, which is not ideal since a %Status is composed

Page 2 of 3

Frontier: An abstraction layer for rapid REST development: Part 5 - Errors
Published on InterSystems Developer Community (https://community.intersystems.com)

by special characters.

In the next tutorial we'll see how to set up reporters to notify about impeding errors.

#JSON #REST API #Caché #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source
URL:https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-5-errors

Page 3 of 3

https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/Frontier
https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-5-errors

