OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

Avrticle
Dmitrii Kuznetsov - oct7,2019 12 read

Open Exchange

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols

How can you allow computers to trust one another in your absence while maintaining security
and privacy?

“Oui, monsieur.”
“Just a moment. Three measures of Gordons, one of vodka, half a measure of Kina Lillet. Shake it very well until
it's ice-cold, then add a large thin slice of lemon peel. Got it?”

"Certainly, monsieur.” The barman seemed pleased with the idea.

Casino Royale, lan Fleming, 1953

OAuth helps to separate services with user credentials from “working” databases, both physically and
geographically. It thereby strengthens the protection of identification data and, if necessary, helps you comply with
the requirements of countries' data protection laws.

With OAuth, you can provide the user with the ability to work safely from multiple devices at once, while "exposing"
personal data to various services and applications as little as possible. You can also avoid taking on "excess" data
about users of your services (i.e. you can process data in a depersonalized form).

If you use Intersystems IRIS, you get a complete set of ready-made tools for testing and deploying OAuth and
OIDC services, both autonomously and in cooperation with third-party software products.

OAuth 2.0 and OpenID Connect

Page 1 of 14

https://community.intersystems.com/user/dmitrii-kuznetsov
https://openexchange.intersystems.com/package/IRIS-OAuth-example
https://openexchange.intersystems.com/package/IRIS-OAuth-example

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

OAuth and OpenlID Connect— known as OIDC or simply OpenID— serve as a universal combination of open
protocols for delegating access and identification— and in the 21st century, it seems to be a favorite. No one has
come up with a better option for large-scale use. It's especially popular with frontenders because it sits on top of
HTTP(S) protocols and uses a JWT (JSON Web Token) container.

OpenlID works using OAuth— itis, in fact, a wrapper for OAuth. Using OpenID as an open standard for the
authentication and creation of digital identification systems is nothing new for developers. As of 2019, itis in its
14th year (and its third version). It is popular in web and mobile development and in enterprise systems.

Its partner, the OAuth open standard for delegating access, is 12 years old, and it's been nine years since the
relevant RFC 5849 standard appeared. For the purposes of this article, we will rely on the current version of the
protocol, OAuth 2.0, and the current REC 6749. (OAuth 2.0 is not compatible with its predecessor, OAuth 1.0.)

Strictly speaking, OAuth is not a protocol, but a set of rules (a scheme) for separating and transferring user
identification operations to a separate trusted server when implementing an access-rights restriction architecture in
software systems.

Be aware: OAuth can't say anything about a specific user! Who the user is, or where the user is, or even whether
the user is currently at a computer or not. But OAuth makes it possible to interact with systems without user
participation, using pre-issued access tokens. This is an important point (see "User Authentication with OAuth 2.0"
on the OAuth site for more information).

The User-Managed Access (UMA) protocol is also based on OAuth. Using OAuth, OIDC and UMA together make it
possible to implement a protected identity and access management (IdM, IAM) system in areas such as:

* Using a patient's HEART (Health Relationship Trust) personal data profile in medicine.

¢ Consumer Identity and Access Management (CIAM) platforms for manufacturing and trading companies.

* Personalizing digital certificates for smart devices in loT (Internet of Things) systems using the OAuth 2.0
Internet of Things (loT) Client Credentials Grant.

Page 2 of 14

https://en.wikipedia.org/wiki/JSON_Web_Token
https://tools.ietf.org/html/rfc6749
https://oauth.net/articles/authentication/
https://tools.ietf.org/html/draft-hardjono-oauth-umacore-14
https://openid.net/wg/heart/
https://tools.ietf.org/html/draft-tschofenig-ace-oauth-iot-00
https://tools.ietf.org/html/draft-tschofenig-ace-oauth-iot-00

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

References normatively as an option

AL LR R R EE R EREEEERERREENNLRELSE I

R (sharing some features as a result) "¢

v

OpeniD

Connect :
Claims can come

from distributed sources
You achieve federated

UM A UMA

You can grant access
to apps operated by anyone

single sign-on and Apps get access using You control access to a
login-time attribute bearer-style tokens variety of protected resources
exchange You can grant access by
You delegate scope- setting policies and terms
SR constrained access eadel e
You grant o other apps The authorization
access by Authorization is based on function is St?ndard
I consentingto authenticated identity and centralizable
. terms at run time Apps can get Authorization is °,'
e You can grant access access after you balse'd on :
,%; 'f'. to apps operated by you go offline claims 2
2 ',%, The authorization 3}\,::;3
©°%% function is local to S, ,t‘;g’
EX protected resources IS
X S
[<. &
%’-?%, Apps can use a variety You control access é??: o Qr:s\:’
O of access token types to web APIs Qo o
(1L 0} Q‘ﬁg hd S
034 O.J- <.’ 09
o % s
X S
_/’;'.o o ‘Q'P
e LN " r. ee® * \c':‘

OAuth 2.0

A New Venn Of Access Control For The APl Economy

Above all, do not store personal data in the same place as the rest of the system. Separate authentication and

authorization physically. And ideally, give the identification and authentication to the individual person. Never store

them yourself. Trust the owner's device.

Trust and Authentication

It is not a best practice to store users' personal data either in one’s own app or in a combined storage location
along with a working database. In other words, we choose someone we trust to provide us with this service.

It is made up of the following parts:

* The user

* The client app

* The identification service
* The resource server

Page 3 of 14

https://www.csoonline.com/article/2136119/a-new-venn-of-access-control-for-the-api-economy.html

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

The action takes place in a web browser on the user's computer. The user has an account with the identification
service. The client app has a signed contract with the identification service and reciprocal interfaces. The resource
server trusts the identification service to issue access keys to anyone it can identify.

The user runs the client web app, requesting a resource. The client app must present a key to that resource to gain
access.

If the user doesn’t have a key, then the client app connects with an identification service with which it has a
contract for issuing keys to the resource server (passing the user on to the identification service).

The Identification Service asks what kind of keys are required.

The user provides a password to access the resource. At this point, the user has been authenticated and
identification of the user has been confirmed, thus providing the key to the resource (passing the user back to the
client app), and the resource is made available to the user.

Implementing an Authorization Service

On the Intersystems IRIS platform, you can assemble a service from different platforms as needed. For example:

1. Configure and launch an OAuth server with the demo client registered on it.

2. Configure a demo OAuth client by associating it with an OAuth server and web resources.

3. Develop client apps that can use OAuth. You can use Java, Python, C#, or NodeJS. Below is an example
of the application code in ObjectScript.

There are multiple settings in OAuth, so checklists can be helpful. Let's walk through an example. Go to the IRIS
management portal and select the section System Administration > Security > OAuth 2.0 > Server.

Each item will then contain the name of a settings line and a colon, followed by an example or explanation, if
necessary. As an alternative, you can use the screenshot hints in Daniel Kutac's three-part article, InterSystems
IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1, part 2, and part 3.

Note that all of the following screenshots are meant to serve as examples. You'll likely need to choose different
options when creating your own applications.

Page 4 of 14

https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-1
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-1
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-2
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-3

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

System > Security Management > QAuth 2.0 Authorization Server Configuration

OAuth 2.0 Authorization Server Configuration

Use the form below to edit the OAuth 2.0 authorization server configuration:

/ General { Scopes { Intervals
/ \ AN

Description OAuthServer

Issuer endpoint | tha endpoint for this Authorization server.

https://52773b-99792125.labs.learning.intersystems.com/oauth2

Host name Port
52773b-99792125.labs.lea
Required. Optional

Audience required

Support user session

Return refresh token Only as required by OpenlD Connect E

Supported grant types (check at least one) [Authorization code
Implicit
Resource owner password credentials

Client credentials

OpenlD provider documentation Service Documentation URL

Policy URL

Terms of service URL

SSL/TLS configuration oauthserver <]

On the General Settings tab, use these settings:

Supported permission types (select at least one):
o Authorization code
o Implicit
o Account details: Resource, Owner, Password
o Client account details
SSL/TLS configuration: oauthserver

On the Scopes tab:

Add supported scopes: scopel in our example

On the Intervals tab:

Access Key Interval: 3600

Authorization Code Interval: 60

Update Key Interval: 86400

Session Interruption Interval: 86400

Validity period of the client key (client secret): 0

On the JWT Settings tab:

Description: provide a description of the configuration, such as "Authorization server".
The endpoint of the generator (hereinafter EPG) host name: DNS name of your server.

Page 5 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

* Entry algorithm: RS512
* Key Management Algorithm: RSA-OAEP
¢ Content Encryption Algorithm: A256CBC-HS512

On the Customization tab:

¢ |dentify Class: %OAuth2.Server.Authenticate

* Check User Class: %0OAuth2.Server.Validate

* Session Service Class: OAuth2.Server.Session

* Generate Key Class: %0Auth2.Server.JWT

¢ Custom Namespace: %SYS

* Customization Roles (select at least one): %DBIRISSYS and %Manager

Now save the changes.

The next step is registering the client on the OAuth server. Click the Customer Description button, then click Create
Customer Description.

System > Security Management > OAuth 2.0 Authorization Server Configuration > OAuth 2.0 Server > Client Description

Client Description

Use the form below to edit an existing client description which has been registered with the OAuth 2.0 authorization server:

General Client Credentials * Client Information { JWT Settings

Name | OAuthClient
Required.

Description
Client type °Conf|dential Public Resource server
Required.

Redirect URLs
https://52773b-76230063.labs.learning.intersystems.com/csp/sys/oauth2/0OAuth2. Response.cls

Require at least one URL. Click an item in the list to edit or remove
Add URL
oK Cancel

Supported grant types (check at least one) [Authorization code
Implicit
Resource owner password credentials
Client credentials

JWT authorization

Supported response types (check at least one) [code
@ id_token
id_token token
@ token

Authentication type none @basic form encoded body client secret JWT private key JWT

On the General Settings tab, enter the following information:

* Name: OAuthClient

¢ Description: provide a brief description

¢ Client Type: Confidential

* Redirect URLs: the address of the point to return to the app after identification from oauthclient.
* Supported grant types:

Page 6 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

° Authorization code: yes
o Implicit
° Account details: Resource, Owner, Password
o Client account details
o JWT authorization
* Supported response types: Select all of the following:
o code
o idtoken
o idtoken key
o token
¢ Authorization type: Simple

The Client Account Details tab should be auto-completed, but ensure the information here is correct for the client.
On the Client Information tab:

* Authorization screen:
o Client name
° Logo URL
o Client homepage URL
° Policy URL
o Terms of Service URL

Now configure the binding on the OAuth server client by going to System Administration > Security > OAuth 2.0 >
Client.

System > Security Management > OAuth 2.0 Client > Server Description

Server Description [Gee][Cere] S|

Use the form below to edit an existing OAuth 2.0 server description (entered manually):

Issuer endpoint https://52773b-99792125.labs.learning.intersystems.com/cauth2
Required. Endpoint URL to be used to identify the authorization server

SSL/TLS configuration [oauthclient v]

Required if SSL used for discovery

Registration access token
Optional.

Authorization server | This section describes the authorization server to be used

https://52773b-99792125.labs.learning.intersystems.com/oauth2/autharize
Required

https://52773b-99792125.labs.learning.intersystems.com/oauth2/token
Required

https://52773b-99792125.1abs.learning.intersystems.com/oauth2/userinfo

https://52773b-99792125.labs.learning.intersystems.com/oauth2/introspection

https://52773b-99792125.labs.learning.intersystems.com/oauth2/revocation

JSON Web Token (JWT) Settings

https://52773b-99792125.
Required. Enter an URL

Page 7 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols

Published on InterSystems Developer Community (https://community.intersystems.com)

Create a Server Description:

* The endpoint of the generator: taken from the general parameters of the server (see above).
SSL/TLS configuration: choose from the preconfigured list.

¢ Authorization server:

o Authorization endpoint: EPG + /authorize
o Key endpoint: EPG + /token
o User endpoint: EPG + /userinfo
o Key self-test endpoint: EPG + /revocation
o Key termination endpoint: EPG + /introspection
* JSON Web Token (JWT) settings:
o Other source besides dynamic registration: choose JWKS from URL

°o URL: EPG + /jwks

The following is a list of server metadata properties:

Name

issuer

authorization_endpoint

token_endpoint

userinfo_endpoint

revocation_endpoint

introspection_endpoint

jwks_uri

registration_endpoint

scopes_supported

response_types_supported
response_modes_supported
grant_types_supported
id_token_signing_alg_values_supported
id_token_encryption_alg_values_supported
id_token_encryption_enc_values_supported
userinfo_signing_alg_values_supported
userinfo_encryption_alg_values_supported
userinfo_encryption_enc_values_supported
access_token_signing_alg_values_supported
access_token_encryption_alg_values_supported
access_token_encryption_enc_values_supported
request_object_signing_alg_values_supported
request_object_encryption_alg_values_supported
request_object_encryption_enc_values_supported
token_endpoint_auth_methods_supported
token_endpoint_auth_signing_alg_values_supported
claims_supported

ui_locales_supported
claims_parameter_supported
request_parameter_supported
request_uri_parameter_supported

Value

https://52773b-99792125 labs.learning.intersystems.com/oauth2
https://52773b-99792125 labs_learning.intersystems.com/oauth2/authorize
https://52773b-99792125.1abs.learing.intersystems.com/oauth2/token
https://52773b-99792125 labs.learning.intersystems.com/oauth2/userinfo
https://52773b-99792125 labs_learning.intersystems.com/oauth2/revocation
https://52773b-99792125.1abs.learning.intersystems.com/oauth2/introspection
https://52773b-99792125 labs.learning.intersystems.com/oauth2/jwks
https://52773b-99792125.labs.learning.intersystems.com/oauth2/register
openid, profile, email, address, phone, scope1

code

query, fragment, form_post

authorization_code, refresh_token

HS256, HS384, HS512, RS256, RS384, RS512

none, RSA1_5, RSA-OAEP, A128KW, A192KW, A256KW

none, A128CBC-HS256, A192CBC-HS384, A256CBC-HS512

none, HS256, HS384, HS512, RS256, RS384, RS512

none, RSA1_5, RSA-OAEP, A128KW, A192KW, A256KW

none, A128CBC-HS256, A192CBC-HS384, A256CBC-HS512

none, HS256, HS384, HS512, RS256, RS384, RS512

none, RSA1_5, RSA-OAEP, A128KW, A192KW, A256KW

none, A128CBC-HS256, A192CBC-HS384, A256CBC-HS512

none, HS256, HS384, HS512, RS256, RS384, RS512

none, RSA1_5, RSA-OAEP, A128KW, A192KW, A256KW

none, A128CBC-HS256, A192CBC-HS384, A256CBC-HS512
client_secret_post, client_secret_basic, client_secret_jwt, private_key_jwt
HS256, HS384, HS512, RS256, RS384, RS512

preferred_username, email, email_verified, name, phone_number, phone_number_verified, iss, sub, aud, exp, auth_time, jti

de, en, en-us, es, f, it, ja, ko, nl, pt-br, ru, uk, zh-cn
true
true
true

From this list, for example, you can see (scopessupported and claimssupported) that the server can provide the
OAuth-client with different information about the user. And it's worth noting that when implementing your
application, you should ask the user what data they are ready to share. In the example below, we will only ask for

permission for scopel.

Now save the configuration.

If there is an error indicating the SSL configuration, then go to Settings > System Administration > Security >
SSL/TSL Configurations and remove the configuration.

Page 8 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

System > Security Management > QAuth 2.0 Client > Client Configurations > Client Configuration

Client Configuration [s J[o]

Use the form below to edit an existing OAuth 2.0 client configuration for server https://52773b-
99792125.labs.learning.intersystems.com/oauth2:

If you register a client dynamically, specify details on the tabs below, except for the Client Credentials tab. When you are done, click Register and Save.
InterSystems IRIS contacts the authorization server, registers the client, obtains the generated client ID and client secret, and saves that information
locally.

If you register a client manually, specify details on all the tabs. On the Client Credentials tab, enter the client ID, client secret, and other information
generated by the authorization server. Then click Save.

/ General Y Client Information \“./ JWT Settings Y Client Credentials

Application name |OAuthClient

Required. Local name of the client application.

Client name QAuthClient

Global name to be used for dynamic registration
Description

Enabled

Client Type gConfidential Public Resource server

SSL/TLS configuration [oauthclient 3]

Required.

Client redirect URL | The client URL to be specified to the authorization server to receive responses.

https://52773b-76230063.labs.learning.intersystems.com/csp/sys/oauth2/0Auth2. Response.cls

Use TLS/SSL

Host name Port Prefix
52773b-76230063.labs.le:
Required Optional. Optional

Required grant types (check at least one) Authorization code
Implicit
Resource owner password credentials
Client credentials

JWT authorization

Authentication type none o basic formencodedbody client secret JINT private key JWT

Now we're ready to set up an OAuth client:
System Administration > Security > OAuth 2.0 > Client > Client configurations > Create Client configurations
On the General tab, use these settings:

* Application Name: OAuthClient
¢ Client Name: OAuthClient
* Description: enter a description
* Enabled: Yes
¢ Client Type: Confidential
* SSL/TCL configuration: select oauthclient
¢ Client Redirect URL: the DNS name of your server
* Required Permission Types:
o Authorization code: Yes
o Implicit
o Account details: Resource, Owner, Password
o Client account details
° JWT authorization
* Authorization type: Simple

On Client Information tab:

Page 9 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

* Authorization screen:
Logo URL
o Client homepage URL
° Policy URL
o Terms of Service URL
¢ Default volume: taken from those specified earlier on the server (for example, scopel)
¢ Contact email addresses: enter addresses, separated by commas
¢ Default max age (in seconds): maximum authentication age or omit this option

o

On the JWT Settings tab:

* JSON Web Token (JWT) settings
* Creating JWT settings from X509 account details
IDToken Algorithms:
o Signing: RS256
o Encryption: A256CBC
o Key: RSA-OAEP
¢ Userinfo Algorithms
¢ Access Token Algorithms
* Query Algorithms

On the Client Credentials tab:

¢ Client ID: as issued when the client registered on the server (see above).

¢ Client ID Issued: isn't filled in

* Client secret: as issued when the client registered on the server (see above).
* Client Secret Expiry Period: isn't filled in

¢ Client Registration URI: isn't filled in

Save the configuration.

Web app with OAuth authorization

OAuth relies on the fact that the communication channels between the interaction participants (server, clients, web
application, user's browser, resource server) are somehow protected. Most often this role is played by protocols
SSL/TLS. But OAuth will work and on unprotected channels. So, for example, server Keycloak, by default uses
HTTP protocol and does without protection. It simplifies working out and debugging at working out. At real use of
services, OAuth protection of channels should be included strictly obligatory is written down in the documentation
Keycloak. Developers InterSystems IRIS adhere to a more strict approach for OAuth - use SSL/TSL is obligatory.
The only simplification - you can use the self-signed certificates or take advantage of built-in IRIS service PKI
(System administration >> Security >> Public key system).

Verification of the user's authorization is made with the explicit indication of two parameters - the name of your
application registered on the OAuth server, and in the OAuth client scope.

Par amet er QAUTH2APPNAME = "QAut hClient";

set isAuthorized = ##cl ass(¥BYS. QAut h2. AccessToken) . | sAut hori zed(
. . #CAUTH2 APPNAME,

. sessionl d,

"scopel",

. accessToken,

. i dt oken,

. responseProperties,

Page 10 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

.error)

In the lack of authorization, we prepare a link to the request for user identification and obtaining permission to work
with our application. Here we need to specify not only the name of the application registered on the OAuth server
and in the OAuth client and the requested volume (scope) but also the backlink to which point of the web
application to return the user.

Par anet er QAUTH2CLI ENTREDI RECTURI = "https://52773b-76230063. | abs. | earni ng.intersyste
nms. conif oaut hclient/"

set url = ##cl ass(¥BYS. QAut h2. Aut hori zati on). Get Aut hori zat i onCodeEndpoi nt (

. . #CAUTH2 APPNANME,

"scopel",

.. #OQAUTH2CLI| ENTREDI RECTURI ,

. properties,

. i sAut hori zed,

. 8C)

We use IRIS and register users on the IRIS OAuth server. For example it is enough to set to the user only a name
and the password.

At transfer of the user under the received reference, the server will carry out the procedure of identification of the
user and inquiry at it of the permissions for operation by the account data in the web application, and also will keep
the result in itself in global OAuth2.Server.Session in the field %SYS:

Sign in with your Account

OAuthUser

Sign in

Cancel

Page 11 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

3. Demonstrate the data of an authorized user. If the procedures are successful, we have, for example, an access
token. Let's get it:

set valid = ##cl ass(¥8YS. QAut h2. Val i dati on). Val i dat eJWI(
. #OAUTH2 APPNANVE,

accessToken,

"scopel",

. aud,

. JWIJsonObj ect

.securityParaneters,

Page 12 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

. SC

)

The full working code of the OAuth example:

Cl ass QAut hC i ent. REST Ext ends %CSP. REST

{
Par amet er QAUTH2APPNAME = "QAuthd ient";
Par amet er QAUTH2CLI ENTREDI RECTURI = "https://52773b-76230063. | abs. | earni ng. i ntersyste

nms. conif oaut hclient/";

/1 to keep sessionld

Par anet er UseSession As Integer = 1;

XData Url Map [XMLNanespace = "http://ww.intersystens. confurl nap"]
{

<Rout es>
<Rout e Met hod="GET" Ul ="/" Call = "Do" />
</ Rout es>

}

C assMet hod Do() As %st at us

{

// Check for accessToken
set isAuthorized = ##cl ass(%BYS. QAut h2. AccessToken) . | sAut hori zed(
. . #OAUTH2 APPNANME,
. sessionld,
"scopel",
. accessToken,
. i dt oken,
. responseProperti es,
.error)
/1l to show accessToken
if isAuthorized {
set valid = ##cl ass(%8YS. QAut h2. Val i dati on). Val i dat eJWI'(
. . #OAUTH2 APPNANME,
accessToken,
"scopel",
. aud,
. JWIJsonbj ect
.securityParaneters,
. SC
)
&tm < Hell o!
 >
w "You access token =", JWJsonObject. %roJSON()
gtm < </htm > >
quit $IK
}
/1 performthe process of user and client identification and get accessToken
set url = ##cl ass(¥BYS. QAut h2. Aut hori zati on) . Get Aut hori zat i onCodeEndpoi nt (
. . #OAUTH2 APPNAME,
"scopel",
.. #OAUTH2CLI ENTREDI RECTURI
. properties,
.1 sAut hori zed,
. SC)
i f $%$3$I SERR(sc) {
w "error handling here"

Page 13 of 14

OAuth Authorization and InterSystems IRIS: Taming Trust Protocols
Published on InterSystems Developer Community (https://community.intersystems.com)

quit $$SK
}
/1 url magic correction: change slashes in the query paraneter to its code
set url Base = $PI ECE(url, "?")
set url Query = $PI ECE(url, "?", 2)
set url Query = SREPLACE(url Query, "/", "9%RF")

set url = urlBase _ "?" _ url Query
&t m <
<htm >
<hl1l>Aut hori zation in IR'S via QAut h2</ hl>
Authorization in l Rl S</ b>
</htm >
>
quit $IK
}
}

You can also find a working copy of the code on the InterSystems GitHub repository:
https://github.com/intersystems-community/iris-oauth-example.

If necessary, enable the advanced debug message mode on the OAuth server and OAuth client, which are written
to the ISCLOG global in the %SYS area:

set "% SCLOG = 5
set "% SCLOG"Category", "QAuth2") =5
set "9 SCLOE " Category", "QAuth2Server") =5

For more details, see the IRIS Using OAuth 2.0 and OpenID Connect documentation.

Conclusion

As you've seen, all OAuth features are easily accessible and completely ready to use. If necessary, you can
replace the handler classes and user interfaces with your own. You can configure the OAuth server and the client
settings from configuration files instead of using the management portal.

#JSON #OAuth2 #Security #Tutorial #InterSystems IRIS
Check the related application on InterSystems Open Exchange

Source
URL:https://community.intersystems.com/post/oauth-authorization-and-intersystems-iris-taming-trust-protocols

Page 14 of 14

https://github.com/intersystems-community/iris-oauth-example
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GOAUTH
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/IRIS-OAuth-example
https://community.intersystems.com/post/oauth-authorization-and-intersystems-iris-taming-trust-protocols

