Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Zhong Li - mar 15,2019 15m read

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part
1)

Keywords: Jupyter Notebook, Tensorflow GPU, Keras, Deep Learning, MLP, and HealthShare

1. Purpose and Objectives

In previous'Part |" we have set up a deep learning demo environment. In this "Part II" we will test what we could do
with it.

Many people at my age had started with the classic MLP (Multi-Layer Perceptron) model. It is intuitive hence
conceptually easier to start with.

So let's try a Keras "deep learning MLP" with standard demo data that everybody in AI/NN community has been
using. It is a kind of so called "supervised learning". We will see how simple to run it on the Keras level.

We could later touch on its history and on why it's called "deep learning" the buzz word - what actually evolved over
the recent 20 years.

In the end | hope we could start to imagine or forecast a bit real use cases for it, since we have HealthShare along
with us.

2. Scope and Disclaimer

We will try to

¢ set up a new Jupyter kernel for our tensorflow-gpu environment.

¢ define, train, and validate(test) a Keras MLP model with standard MNIST samples, like everyone else in
ANN community.

* briefly talk its key parameters - only a few of them, fairly simple.

* briefly inspect the demo data - understanding the data is always the key in each and every experiment.

* demo how easy it is to save some data sample into Cache / HealthShare, and to read it back for prediction
(classification), and its implications.

Then we may rotate some test samples a bit to see how much we could confuse our trained model - then we may
see its apparent limits.

We will skip the academic and mathematical part of it, but we might briefly talk into how it works.
Disclaimer: MNIST data sample is publicly available for this demo purpose. Most demo code were cut to minimum

and bare without error handling - all rely on the underlining components. The sources of the Keras codes will be
listed in Acknowledgement. The content will be revised anytime as needed.

Page 1 of 16

https://community.intersystems.com/user/zhong-li-0
https://community.intersystems.com/post/deep-learning-demo-kit-python3-binding-healthshare-part-i
http://yann.lecun.com/exdb/mnist/

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

3. Prerequisite

There is no prerequisite for the following experiments other than you need to set up the demo environment as listed
in previous "Part I" article.

4. Set up Jupyter Notebook
| ran the following commands in my previously installed "tensorflow-gpu" environment.

(tensorflow-gpu) C:\>conda install ipykernel
Solving environment: done

(tensorflow-gpu) C:\>python -m ipykernel install --user --name tensorflow-gpu --display-name "Tensorflow-GPU"
Installed kernelspec tensorflow-gpu in C:\Users\zhongli\AppData\Roaming\jupyter\kernels\tensorflow-gpu

By doing so | created a new Jupyter kernel called e.g. "Tensorflow-GPU".

Now we can start the Jupyter Notebook from Anaconda Prompt as below:

(tensorflow-gpu) C:\anaconda3\keras\Zhong>jupyter notebook

[1 10:58:12.728 NotebookApp] The Jupyter Notebook is running at:

[1 10:58:12.729 NotebookApp] http://localhost:8889/?token=6b40f6e6749e88b80a338eec3330d06c181ead9b644...
[1 10:58:12.734 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip

confirmation).
[C 10:58:12.835 NotebookApp]

You will see its browser Ul is started as below. If you click New... then open a new tab of "TensorflowGPU".

Page 2 of 16

https://community.intersystems.com/post/deep-learning-demo-kit-python3-binding-healthshare-part-i
http://localhost:8889/?token=6b40f6e6749e88b80a338eec3330d06c181ead9b644cffe1

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

:' Home » H5201871_Mrust_MLP_Roz
C 1t @ localhost:B889/tree

! Apps i Te do - Clinical Bioi [QD HS -= QdHsMai...
— Jupyter
Files Running Clusters

Select items to perform actions on them.

0 ~ Im

L}

& Untitled. ipynb
& |ntitled1.ipynb
& |Intitled2 ipynb
& Untitled3.ipynb
& Untitied4.ipynb
0 mnist_mlp.py

0O tensorboard _embeddings_mnist py

5. Train a Deep Learning MLP model

Let's try a standard deep learning MLP model demo.

5.1 Test the environment

X RIS Al - InterSyste...

HS520181_Mnist MLP_Roated number result..ipynb

x | + - -
% o
CMC Training Personal
Cuit Logout
Motebook
Mame < e
Python 3
Rur tensortlow-gPU kB
Other: kB
Text File B
Folder
) kB
Terminal
an hour ago 2B

Running an hour ago 863kB
2 months ago 165 kB

2 months ago 3.25kB

Rename the Jupyter tab to something like "MLPDemo HS", and test Python in its Cell [1] by running a line blow,

then click "Run"

print('Hello World!")

Hel | o Worl d!

5.2 Test Python Connection into a HealthShare

Run a Python sample program in Cell[2] to test we still can connect into the HealthShare db instance as listed in

"Part |" article.

import codecs, sys
import intersys.pythonbind3

try:
print ("Simple Python binding sample")

port = input("Cache server port (default 56778)? ")

Page 3 of 16

https://community.intersystems.com/post/deep-learning-demo-kit-python3-binding-healthshare-part-i

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

port = port.rstrip()
if (port ==""):
port = "56778"

url = "localhost["+port+"]:SAMPLES"
print ("Connection string: " + url)

print ("Connecting to Cache server")

conn = intersys.pythonbind3.connection()
conn.connectnow(url, "SYSTEM", "SYS", None)
print ("Connected successfully")

print ("Creating database")
database = intersys.pythonbind3.database(conn)

print ("Opening Sample.Person instance with ID 1 with default concurrency and timeout")
person = database.openid("Sample.Person", "1", -1, -1)

print ("Getting the value of the Name property")
name = person.get("Name")
print ("Value: " + name)

print ("Test completed successfully")
except intersys.pythonbind3.cacheexception(err):
print ("InterSystems Cache' exception")
print (sys.exctype)
print (sys.excvalue)
print (sys.exctraceback)
print (str(err))

Si npl e Pyt hon bi ndi ng sanpl e

Cache server port (default 56778)?

Connection string: |ocal host[56778]: SAMPLES

Connecting to Cache server

Connect ed successfully

Creati ng database

Openi ng Sanpl e. Person instance with ID 1 with default concurrency and ti neout
Getting the value of the Name property

Val ue: Zevon, Mary M

Test conpl eted successful ly

5.3 Explanation - MLP model topology and MNIST data set

MLP network's topology is straightforward, as shown below. It normally has 1x input and 1x output layer, and has a
number of hidden layers.

Each layer has a number of neurons (nodes). Each neuron has an activation function. There can be fully meshed
connections (called "Dense" model) between neurons on 2 different layers, as below.

Page 4 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

Correspondingly, the Keras MLP model we are testing below will have e.g.

* an input layer of 784 = 28 x 28 nodes (so it represent a small image of 28x28 pixels; each will be a
handwritten digit from "0" to "9" - and the MNIST dataset contains 60,000 such images for training, and
another 10,000 for testing)

¢ an output layer of 10x nodes (each representing a classification result, between 0 and 9, of an input image
)

¢ 2x hidden layers, each having 512x nodes.

That's the key topology of this demo model. We will skip other details for now and go to have a run with it.

Output Layer 0123456789
10 Categories
0000000000

Layer 2
512 Nodes OOOOO0OO0OO0O000CO00O0

Layer 1 e
512 Nodes OGO O O 00 0 0000000

Input Vector
784 Pixels

5.4. Load MNIST sample data from Google Public Cloud

Now we start to create the above model from very beginning, by loading the Keras packages and MNIST data into
a Jupyter Cell. Then we will click "Run" button on the menu:

Import Keras modules

import keras

from keras.datasets import mnist

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop

Define key training parameter

batchsize = 128 # weights adjusted in 128 steps

numclasses = 10 # 10 classification results on the output layer
epochs =20 # run the set of samples 20 times.

###load the data from Google public cloud
load the MNIST sample image data, split between train and test sets

(xtrain, ytrain), (xtest, ytest) = mnist.loaddata()

Note: if there are issues then follow the exception (more likely can't find a package etc), search Google for answers
(99% chance you will get the answer), or post your question below.

The last line of code loaded the whole date set of 60,000 and 10,000 into a Python array of 3-dimension integers.

Page 5 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's load one of the training sample into HealthShare database to have a look.

5.5 Load a data sample into HealthShare globals.

In HealthShare -> SAMPLES namespace- > Sample.Person.cls, | scratch up this simplest class method:

ClassMethod SetTrainGlobals(d1 As %lInteger = 0, d2 As %Integer = 0, value As %String =", target As
%String = ") As %BigInt [SqlProc]

{

Set AXTrainlnput(dl, d2) = value

Set MYTrainTarget(dl) = target

return $$$OK

}

It will take an input training sample as a string into a global “XTrainlnput, and will save the input training target into
AYTrainTarget.

Let's recompile, refresh the connection per section 5.2, then run the call from the Python's cell as below:
resultl = person.runobjmethod("SetTrainGlobals", [0, 2, str(xtrain[0]), str(ytrain[0])])

On HealthShare -> Samples, you will see a global called *XTrainGlobal(0, 2) was created with a string of 2D
integers.

Later we can do another simple method to read the data back into a Python variable as a sample.

5.6 Define the model and run the training

Let's finish off the MLP model definition and training in Jupyter.

Basically the code below, "reshape" just converts each 28 x 28 sample into a line of 1x 784 values, each between 0
and 255, then it is normalised to float type between 0 and 1.0.

Code between Model.Sequential and Model.Summary is to define a MLP of 784 x 512 x 512 x 10 nodes, with a
“relu" activation function.

Finally model.fit to train it and model.evalute to assess the test result.

xtrain = xtrain.reshape(60000, 784)
xtest = xtest.reshape(10000, 784)
xtrain = xtrain.astype(‘float32")
xtest = xtest.astype(‘float32")

xtrain /= 255

xtest /= 255

print(xtrain.shape[0], 'train samples")
print(xtest.shape[0], 'test samples')

convert class vectors to binary class matrices
ytrain = keras.utils.tocategorical(ytrain, numclasses)
ytest = keras.utils.tocategorical(ytest, numclasses)

model = Sequential()
model.add(Dense(512, activation="relu’, inputshape=(784,)))

Page 6 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

model.add(Dropout(0.2))

model.add(Dense(512, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(numclasses, activation='softmax'))

model.summary()

model.compile(loss='categoricalcrossentropy’,
optimizer=RMSprop(),
metrics=['accuracy'])

history = model.fit(xtrain, ytrain,
batchsize=batchsize,
epochs=epochs,
verbose=1,
validationdata=(xtest, ytest))

score = model.evaluate(xtest, ytest, verbose=1)

print(‘'Test loss:', score[0])
print("Test accuracy:', score[1])

Usi ng Tensor Fl ow backend.

60000 train sanples
10000 test sanples

Layer (type) Qut put Shape Param #
dense_1 (Dense) (Nome, 512) 201920
dropout 1 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 512) 262656
dropout _2 (Dropout) (None, 512) 0

dense_3 (Dense) (None, 10) 5130

Total parans: 669, 706
Trai nabl e parans: 669, 706
Non-trai nabl e parans: 0

Train on 60000 sanples, validate on 10000 sanpl es

Epoch 1/20

60000/ 60000 [::::::::::::::::::::::::::::::

.9243 - val loss: 0.1057 - val _acc: 0.9672
Epoch 2/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9685 - val loss: 0.0900 - val _acc: 0.9730
Epoch 3/20

60000/ 60000 [::::::::::::::::::::::::::::::

9780 - val loss: 0.0756 - val _acc: 0.9783
Epoch 4/20

60000/ 60000 [::::::::::::::::::::::::::::::

9816 - val loss: 0.0771 - val _acc: 0.9801

11s 178us/step -

6s 101lus/step -

6s 101lus/step -

6s 100us/step -

| oss:

| oss:

| oss:

| oss:

0. 2476 - acc:

0.1023 - acc:

0.0751 - acc:

0. 0607 - acc:

0

0.

0.

0.

Page 7 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

Epoch 5/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9844 - val | oss:
Epoch 6/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9866 - val _| oss:
Epoch 7/20

60000/ 60000 [::::::::::::::::::::::::::::::

9885 - val | oss:
Epoch 8/20

60000/ 60000 [::::::::::::::::::::::::::::::

9898 - val | oss
Epoch 9/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9911 - val | oss:
Epoch 10/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9911 - val _l oss:
Epoch 11/20

60000/ 60000 [::::::::::::::::::::::::::::::

9922 - val | oss:
Epoch 12/20

60000/ 60000 [::::::::::::::::::::::::::::::

926 - val | oss:
Epoch 13/20

60000/ 60000 [::::::::::::::::::::::::::::::

9935 - val | oss:
Epoch 14/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9939 - val _l oss:
Epoch 15/20

60000/ 60000 [::::::::::::::::::::::::::::::

9936 - val | oss:
Epoch 16/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9944 - val | oss:
Epoch 17/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9951 - val | oss:
Epoch 18/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9955 - val _l oss:
Epoch 19/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9954 - val | oss:
Epoch 20/ 20

60000/ 60000 [::::::::::::::::::::::::::::::

9956 - val | oss:

10000/ 10000 [::::::::::::::::;:::::::::::::
0. 11318948425535869

Test | oss:

0. 1132

Test accuracy: 0.9832

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

6s

1s

101lus/ step

102us/ step

101lus/ step

101us/ step

101lus/ step

105us/ st ep

102us/ step

99us/step -

101lus/ step

100us/ st ep

104us/ step

100us/ step

101lus/ step

102us/ step

100us/ st ep

102us/ step

71lus/ step

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

| oss:

0.0512 - acc:
0. 0449 - acc:
0.0377 - acc:
0.0334 - acc:
0. 0307 - acc:
0.0298 - acc:
0.0273 - acc:
0.0247 - acc: O.
0. 0224 - acc:
0.0219 - acc:
0.0227 - acc:
0. 0198 - acc:
0.0182 - acc:
0.0178 - acc:
0. 0167 - acc:
0. 0169 - acc:

That's all - now it's "trained". Only a few line of codes, this Keras deep learning MLP runs fairly efficiently on our
"tensorflow-gpu" environment. It validates all of our kit installation so far.

9

Page 8 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

6 Test the model with a sample
Let's test the trained model with a specified sample below.

We will randomly select a specific sample out of the 10,000 xtest set, and save it into another HealthShare global,
then read it back out of the global into a Python array as a demo sample. We will test the trained model with it.

Then we will rotate this input sample 90, 180 and 270 degrees, and re-test our model , to see whether we
would confuse it .

6.1 Save a sample into HealthShare - Demo

Let's randomly pick a sample, say the 12th out of the 10,000 test samples, and save it into a HS global:
Add a new class method in HealthShare -> SAMPLE -> Sample.Person class:

ClassMethod SetT2Globals(d1 As %lInteger = 0, d2 As %Integer = 0, d3 As %lInteger = 0, value As
%String =", target As %String = ") As %Bigint [SqlProc]
{

Set XTestlnput(d1, d2, d3) = value

Set MYTestTarget(d1, d2) = target

return $$$0OK

}

Recompile Sample.Person.cls. In Jupyter Notebook, re-run Section 5.2 code to refresh the db binding; then run
this line to save the sample of 28 x 28 numbers into global ~XTestInput:

import re
n =12 #randomly choose a sample
for i in range(0, len(xtrain[n])):
rl = person.runobjmethod("SetT2Globals", [1, n, i, re.sub('0\s0', ' 0 0', str(xtest[n][i])), str(ytest[n])])

Now we can see a sample of 2D array was saved into a HS SAMPLE global ~XTestlnput. Each number is a pixel
grey scale of 0-255. From below the HS Management Portal we can easily "tell" it's a "9":

Page 9 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part II)
Published on InterSystems Developer Community (https://community.intersystems.com)

o« View Global Data b4 +
< C Y @ localhost57780/csp/sys/exp/UtilExpGlobalView.csp?$ID2=XTestinput&SNAMESP... €, + O
Home | About | Help | Logout System > Globals » View Global Data HealthShare

View Global Dat Server [ISFEINCY Namespsce: SAMPLES This is a Development System by InterSystems
1ew al Latd Usar: SYSTEM Licensed to: 1SC HealthShare Insisnce: H520181

View global in namespace SAMPLES:

Global Search Mask: (~yTestinput Display || Cancel

Searn HEt [Ax Tesfinpul +* B Masimum Fious:| 100 Allow Exit
1: “¥TestInput(l, 12.@) =" @ 2 e 2 e a a a e 2] e 2] -] a -] a =] 2 -] @ a -] a -] e 2] 2 al"
i AATestInput(l,12,1) =~"[@ 2 =] 2 e @ a 8 e -] e -] -] a -] a =] 2 2] @ a -] a -] e -] [e]"
B “NTestInput(l,12,2) =~"[@ 2 e 2 e a a a e 2] e 2] -] a -] a =] 2 -] @ a -] a -] e 2] 2 e]"
e ARTestInput(l,12,3) =~"[8 [B [=] @ a @ 8 e 8 e -] a -] a =] e 2] @ a [:] a [:] 8 e [Bl
Sk “ETestInput(l,12,4) =" @ e B e =] a a a 8 2] 8 2] (-] a (-] a B e 2] & a [:] a [:] 8 2] e Bl
e AATestInput(l,12,5%) =~"[8 [B [=] @ a @ 8 e 8 e -] a -] a =] e 2] @ a [:] a [:] 8 e [Bl
. “XTestInput(l,12,6) ="[@ [B [8 (-] 8 @ 8 e 8 e -] a -] a B 8 2] & a] a] 8 e [B]"
LE A¥TestInput(1,12.7) =" @ 2 a8 2 a8 @ a 8 a a a @ 4% 1ga8 253 255 253 169 36 11 7a g a [:] a a [a]"
a: A¥TestInput(1,12.8) =" @ 2 8 2 a8 a8 a a a 2] 5 6B 228 52 252 353 2I5% 252 168 189 253 92 a [:] a 2] 2 a]"
1@ “¥TestInpui(l,12,%) =" @ [8 [a8 @ a a8 a @ 55 25F 252 2¥7 7% 69 60 18@ 96 236 4T &7 a [:] a a [8"
11 ANTestInput(l,12,18) = ~[@ 2 e 2 e a a a @ 43 233 25 185 5@ -] a 8 26 283 252 135 -] a -] e 2] 2 e]"
1. AATestInput(l,12,11) = "[@ 2 =] 2 e @ a 8 @ 168 253 178 37 a -] a @ 7@ 15 252 63 -] a -] e -] [e]"
1 AATestInput(1,12,12) = ~[@ 2 B 2 e a a @ 155 253 242 42 (-] a (-] a 5 191 253 19@ a a a a [} 1] 2 Bl
Las ARTestInput(l,12,13) =" 8 [B [=] @ a @ 287 252 238 e -] a -] 5 136 252 252 &4 a [:] a [:] 8 e [Bl
LEE “ETestInput(l,12,14) = "[8 e B e =] a a @ 287 252 238 2] (-] 8 32 138 252 252 227 1& a [:] a [:] 8 2] e B]
Le- ARTestInput(l,12,15) = [8 [B [=] @ a @ 165 252 249 287 287 287 228 253 25I 252 168 @ a [:] a [:] 8 e [Bl
Lo “¥TestInput(l,12,16) = "[@ [B [8 (-] 8 @ 9 179 253 252 252 252 252 75 169 252 56 & a] a] 8 e [B]"
18: A¥TestInput(1,12,17) =" @ 2 a8 2 a8 @ a 8 a B &4 116 116 74 @ 149 253 215 21 [a [:] a [:] a a [a]"
13t A¥TestInput(l,12,18) = "[@ 2 8 2 a8 a8 a a a 2] a 2] -] a @ 253 252 162 a [a [:] a [:] a 2] 2 a]"
2 A¥TestInpui(l,12,19) = "[@ [8 [a8 @ a a8 a a a a -] @ 32 353 148 5@ a [a [:] a [:] a a [8"
1. ANTestInput(l,12,28) = ~[@ 2 e 2 e a a a e 2] e 2] -] @ 157 253 164 2 -] @ a -] a -] e 2] 2 e]"
21 AATestInput(l,12,21) = "[@ 2 =] 2 e @ a 8 e -] e -] @ 43 248 253 &2 2 2] @ a -] a -] e -] [e]"
23 AATestInput(l,12,22) =~[@ 2 B 2 e a a a [} 1] [} 1] @ 03 2531 252 B4 2 2] [a a a a [} 1] 2 Bl
24 ARTestInput(l,12,23) =~ 8 [B [=] @ a @ 8 e 8 e & 114 252 @9 =] e 2] @ a [:] a [:] 8 e [Bl
25 “KTestInput(l,12,24) = "[8 e B e =] a a a 8 2] 8 2] 8 287 252 116 B e 2] & a [:] a [:] 8 2] e Bl
26 AWTestInput(l,12,25) =" @ a B a =] 1] 8 @ a8] a8] @ 165 252 116 B @] [a] a] a8] a g|"
2 “¥TestInput(l,12,26) = "[@ [B [8 (-] 8 @ 8 e 8 e @ 93 288 63 B 8 2] & a] a] 8 e [B]"
28t A¥TestInput(1,12,27) = "[@ 2 a8 2 a8 L) a 8 a a a a -] a -] a a 2 a [a [:] a [:] a a [a]"

Totat 28 [End af giobal] |

6.2 Read a sample out of HealthShare global- Demo

We can certainly read the sample out of a HS database global.
Add another class method into Sample.Person.cls, and recompile it

ClassMethod GetT2Globals(d1 As %lInteger = 0, d2 As %lInteger = 0, d3 As %lInteger = 0) As %String [SqlProc]
{

Set value = *XTestInput(d1, d2, d3)

return value

}

In Jupyter, refresh the DB binding as above, then run this Python code to read the global out of HealthShare as a
string, re-format it, then convert it to a 1 x 2D number array:

import re, ast
sample ="
for i in range(0, len(xtrain[n])):
sample += person.runobjmethod("GetT2Globals", [1, n, i])
#convert it to numpy ndarray
asl = np.array(ast.literaleval(re.sub(\s+', ',', re.sub('0\]', '0', re.sub(\[', ", re.sub(\|\[', ' ', sample))))))
Samplel? = asl.reshape(1, 28, 28)
print(Sample12)

Page 10 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

[[[e 2] 2 a a 2 a] 2 g 2 a a 2 a] 2 a 2 2 a 2 @ 2] = a 2 2]
[& 2] 2 a a 2 a] 2 g 2 a a 2 a] 2 a 2 2 a 2 @ 2] = a 2 2]
[& 2] 2 a a 2 a] 2 g 2 a a 2 a] 2 a 2 2 a 2 @ 2] = a 2 2]
[e a e a a 2 a 2 2 8 e a a 2 a e 2 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 2 8 e a a 2 a e 2 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 2 8 e a a 2 a e 2 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 2 8 e a a 2 a e 2 a e 2 a e a a 2 a e 2]
[& a e a a 2 a 2 2 8 e 8 4% 1832 253 255 253 182 36 11 78 E a a 2 a e 2]
[& a e a a 2 a 2 2 8 5 68 228 252 252 253 252 252 168 189 253 92 a a 2 a e 2]
[& a e a a 2 a 2 2 B 55 252 252 227 T2 69 &9 188 9@ 2386 247 &7 a a 2 a e 2]
[& a e a a 2 a 2 2 43 233 252 185 5@ a e 2 26 283 252 135 e a a 2 a e 2]
[& a e a a 2 a 2 2 168 253 178 37 2 a e @ 7@ 252 252 &3 e a a 2 a e 2]
[& a e a a8 2 a & 155 253 242 42 a8 2 a e 5 191 253 1%9@ a8 e a a 2 a e 2]
[& a e a a8 2 a e 287 252 238 a a8 2 a 5 136 252 252 = a8 e a a 2 a e 2]
[& a e a a8 2 a e 287 252 238 a a8 @ 32 138 252 252 227 16 a8 e a a 2 a e 2]
[& a e a a8 2 a & 165 252 249 287 207 287 228 253 252 252 168 2 a8 e a a 2 a e 2]
[& a e a a8 2 a 2 9 175 253 252 252 252 252 75 169 252 56 2 a8 e a a 2 a e 2]
[2 a e a a 2 a 2 2 8 &4 1lls 1l 74 8 149 253 215 21 2 a e a a 2 a e 2]
[2 a e a a 2 a 2 2 a e a a 2 8 253 252 162 e 2 a e a a 2 a e 2]
[2 a e a a 2 a 2 2 a e a a 2 32 253 248 58 e 2 a e a a 2 a e 2]
[2 a e a a 2 a 2 2 a e a a 2 157 253 le4 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 @ a e a B 43 248 253 92 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 @ a e a B 93 253 252 B4 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 @ a e a 8 114 252 289 2 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 @ a e a B 2@7 252 1le 2 a e 2 a e a a 2 a e 2]
[e a e a a 2 a 2 @ a e a B 165 252 116 2 a e 2 a e a a 2 a e 2]
[e @ 2 a =] 2 @ 2 = =] 2 a B 93 28e &2 2 =] 2 2 =] 2 a @ 2 a 2 2]
[e @ 2 a =] 2 @ 2 = =] 2 a =] 2 a 2 2 =] 2 2 =] 2 a @ 2 a 2 2111

6.3 Test our trained model

We can now send this array "Samplel2" into the trained model on Jupyter.
model.predict and/or model.predictclasses does the job for us:

Samplel2 = Samplel2.reshape(l, 784)

Samplel2f = Samplel2.astype('float32')/255 # normalise it to float between [0, 1]
Result12f = model.predict(Samplel12f) #test the 1x784 sample, the result is a 1d matrix
print(Result12f)

Result12 = model.predictclasses(Sample12f) #test the sample, the result is a clasified lable.

print(Result12)

[[2.5672970e-27 1.1168821e-25 1.3736557e-20 6.2964843e-17 7.0107062e-09 6.2905544e-17
1.5294099e-28 7.8019199e-17 3.5748028e-16 1. 0000000e+00]]

[9]

The result indicated that the neuron #9 on the output layer has the maximum value of "1.0", so the classification
result is "9". It's a correct result.

We can certainly send any man-made sample(s) of 28 x 28 integers into the model to have a try.

6.4 Rotate our sample to re-test our model?

How about this - could we rotate this sample 90 degree anticlockwise to have another try?

Samplel2 = Samplel2.reshape(28, 28) #reshape to 2D array values
Sample1290 = np.rot90(Sample12) #rotate in 90 degree
print(Sample1290)

Page 11 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

L= T = s = = = R =
ommEm

m

76 253
11 189
36 lea@
169 252
253 252
255 253
253 252
188 252
49 228
=]

5=}

L I o I o o s s o o s s i TR O s s o s s O T T i T < s s o s s s
wm

MMM ® 0000 00mD0nanonnmomemmobdDh Do
Mmoo oD OH D000 0D06060000 006000000 nm
mmmE S0 E oD DD e oS0 oo o e oo m
MMM ® 0000 00mD0nanonnmomemmobdDh Do
Mmoo oD OH D000 0D06060000 006000000 nm
mmmE S0 E oD DD e oS0 oo o e oo m

=T = s = = = s =~ < I < < 2]

e e L L R e e e e R L K e R e e e e e L K R L K e K e e N e N R R |
oD mmE Do oS E

Then we re-test our model:

Sample12901 = Sample1290.reshape(1, 784)

mom | mm

=

247
238
L]
1aa
L]
L]
79
227
252
252

o
oo

mmmm @D mEm

185
252
233

A

DD D DD E D

178
253
168

=

[B xR e

242
253
155

[T = = = s = =]

Sample1290f = Sample12901.astype(‘float32")/255
Result1290f = model.predict(Sample1290f)

print(Result1290f)

Result1290 = model.predictclasses(Sample1290f)

print(Result1290)

[[2.9022769e-
05 1.2192334e-20 1.7143857

@ Do Dooe D

mmmm

=

217
252
252
138

32

238
252
2a7

mmmm @ m

MMM m D m

[y
(=)}
5= T =]

252
252
253
228
287
287
287
249
252
155

[T = = = s = =]

e-07 3.0004558e-11 2.4583075e-11 6.2443775e-01
2.5749558e- 05 3. 7550735e-01 2. 0722151e-08 5.5368415e-10]]

[5]

oD mm S S

wun
oo

252
169

75
252
252
252
252
253

=
=l
L3 I

oD mEm oD EE

mmmmEmE W

=]
[l

215
253
149

74
11&
11&

o
o

mmmm @D mEm

[T R = e T o

=
(=]
[

252
253

oo

L= = = = T = = e T T I

DD mE S S m

i
mom

248
253
32

m

L I o o s s s o s s T T o

[y
Eﬁﬁﬁﬁﬁﬁﬁmﬁﬁﬁ

253
157

5=}

L= = s = = = R = = = I = = = s = s =]

@D DHDDD DD DD

L0
[

253
248

=
o

@ HDHDD DD DD DD

L e R e s o o o s e

o
4= m

252
253
k]

=

mmmm D E S E S @D

MMM mmm DS DD m

5=}

289
252
114

5=}

=T = s = = = s = =~ < I < I < 2}

a a e
a a e
a a e
a a e
a a e
a a e
a a e
a a e
a a e
a a e
a a e
a a e
116 116 &3
252 252 28@
287 165 93
a a e
a a e
a a e
a a e
a a e
a a e
a a e
a a 8
a a e
a a e
a a e
a a e
a a e

Ok, now our model believes it's a "5" - neuron #5 was triggered with the maximum output value. It's slightly

confused! (Can be pardoned since it does look like a 5 in its up-right part).

Let's turn our sample again to 180 degree - what would our model think?

a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
a]
al]

Page 12 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

[[@ 2 @ @ 2 @ @ 2 @ B 2 a 2 @ @ 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B @ 8 &3 2ee 92 2 @ B @ a 2 @ @ 2 a a g @]
[@ 2 @ =@ 2 @ =@ 2 @ B @ @8 11 252 165 2 @ B @ @ 2 @ =@ 2 @ 5] g @]
[& 2 @ @ 2 @ @ 2 @ 8 @ 8 1lg 252 287 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B @ 8 289 252 114 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B @ @84 252 253 93 2 @ B @ a 2 @ @ 2 a a g @]
[@& B @ =@ B @ =@ g 8 B @ 92 253 248 42 g @ B e @ B @ =@ g @ 5] 2 @]
[& 2 @ @ 2 @ @ 2 @ B8 2 led4 253 157 a 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B 5@ 248 253 32 a 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B 162 252 253 2 @a 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ @ 8 21 215 253 149 2 74 11c 118 &4 @ @ 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ @ B8 58 252 169 75 252 252 252 252 253 179 9 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ @ 8 1lee 252 252 253 223 187 287 287 249 252 185 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ @ 16 227 252 252 138 32 a e © 238 252 287 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ @ &4 252 252 138 5 2 @a e © 238 252 287 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ @ 198 253 191) 2 @ @ 8 42 242 253 155 2 @ @ 2 a a g @]
[& 2 @ @ & @ @ &3 252 252 7@ @ @ @ @ 37 178 253 168 a 2 @ @ 2 a a g @]
[& 2 @ @ & @ @ 135 252 283 26 a @ @ 58 185 252 233 4 a 2 @ @ 2 a a g @]
[& 2 @ @ @ @ &7 247 236 98 188 &9 69 TF9 227 252 252 5 @ @ 2 @ @ 2 a a g @]
[@ 2 @ @ & @ 92 253 189 168 252 252 253 252 252 228 &8 5 @& @ 2 @ @ 2 a a g @]
[& 2 @ @ & @ 9 7& 11 36 189 253 255 253 188 < a8 B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B 2 a 2 @ @ 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B 2 a 2 @ @ 2 @ B @ a 2 @ @ 2 a a g @]
[@ 2 @ =@ 2 @ =@ g 8 B @ @ 2 @ =@ 2 @ B & @ 2 @ =@ 2 a 5] g @]
[& 2 @ @ 2 @ @ 2 @ B 2 a 2 @ @ 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B 2 a 2 @ @ 2 @ B @ a 2 @ @ 2 a a g @]
[& 2 @ @ 2 @ @ 2 @ B 2 a 2 @ @ 2 @ B @ a 2 @ @ 2 a a g @]
[@& g @ =@ g @ =@ g @ B @ @ g @ =@ g @ B @ @ g @ =@ g @ 5] 2 a]]

[[3.3131425e-11 3.0135434e-27 8.7524540e-23 7.1371946e-24 2.4029167e-13 4. 2327470e-09
1. 0000000e+00 1.7086377e-18 1.3129146e-18 2. 8595145e-22]]

[6]
No mistake, of course it's identified to a "6"! We human will tell it as a "6" instead of "9".

Let's turn it the last time to 270 degrees:

[[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[& g @ @ g @ =@ g @ B @ @ g @ =@ g @ B @ @ g @ =@ g @ 5] 2 @]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[& g @ @ g @ =@ g @ @ @ 9 15 1@7 287 155 a B @ @ g @ =@ g @ 5] 2 @]
[@& 2 2 @ 2 @ =@ 2 @ @ @8 179 252 252 252 253 168 432 @ @ 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ 8 &4 253 249 238 238 242 2153 233 55) 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ 8 116 252 287 2 @ 42 178 252 252 &8 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ 8 116 252 287 2 =@ & 37 185 252 228 49 2 @ 2 @ a 2 a]
[& 93 185 287 114 23 43 g @ B 74 252 187 2 @ @ @ G5B 227 152 1@ @ @ g @ 5] 2 @]
[@ 28& 252 252 252 253 248 157 32 8 8 252 228 32 a 2 @ B 79 252 253 2 @ 2 @ a 2 a]
[& B3 116 116 289 252 253 253 253 253 143 75 253 138 5 2 @ B &9 253 255 2 @ 2 @ a 2 a]
[@& 2 2 @ 8 84 92 1le4 248 252 253 189 252 252 136 5 a B &9 252 253 2 @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ & 58 1g2 215 252 252 252 252 191 7@ 26 188 252 169 2 @ 2 @ a 2 a]
[& g @ @ g @ =@ g @ @ 21 56 18 2127 252 252 152 282 9@ 1le@ & @ @ g @ 5] 2 @]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ @ 16 &4 198 252 252 236 189 11 2 @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ @ 63 135 247 253 T8 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B &7 92 9 2 @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[& g @ @ g @ =@ g @ B @ @ g @ =@ g @ B @ @ g @ =@ g @ 5] 2 @]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]
[@& 2 2 @ 2 @ =@ 2 @ a 2 @ 2 @ @ 2 @ B @ a 2 @ @ 2 @ a 2 a]]

Apparently, it's confused again - it is recognised to be a "4"

Page 13 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

[[1.6130849e-06 3.0311636e-
14 2.1490927e-03 2. 7108688e-03 9. 9499077e-01
1.4130991e-04 6.2298268e-06 8.6649310e-09 2.9320630e-12 1.5710594e-07]]

[4]

6.5 Compared with public cloud tools?

| exported the above array via a line of Python code into a PNG, then rotate it, flip it, and put them together on an
image. It would look like this:

Now | upload it separately into "Google Vision API", "Amazon Rekognition", and "Microsoft Computer Vision API",
what would be the results?

Well, it seems that AWS has the slightly best score of 95% on "number"” in this case (this is certainly not meant to
be a representative result).

1. Google Vision API results:

Text

L3
(5]
-]

Font

LY =)
[5]
-]

(% 5]
]

Number

Line 73

Ll
g

[]
[5]
-]

Black-and-white

L
(% 5]
]

Photography

[=
Ln
-]

Calligraphy

(%3]

Symbol

Cireln

™

2. AWS Rekognition Results

Page 14 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

Ubject and scene detection

Rekognition automatically labels objects, concepts and scenes in your images, and provides a confidence score.

Done with the demo?

Learn more
* Results
Text 999 %
Symbol 95 %
Mumber 85 %
Handwriting 902 %
Alphabet 835 %
Choose a sample image Use your own image
y i L'l RE L
3. Bl}crosoft-&ﬂm Calligraphy 255 %
FEATURE VALUE
NAME:
Ohbjects [
Tags [1“name": "blackboard”, "confidence":
0.5068747 }, { "name": "number",
"confidence": 0.5068747 }, { "name":
"watch", "confidence": 0.0174564756 }]
Description { "tags": []. "captions”: [{ "text": "a close up
of a logo", "confidence": 0.8415122} 11}
Image “Png’
format
Image 106 x 112

I"l imancinnc

7. What's next

Next, we will follow up on a few other quick points such as

How MLP works in a nutshell?

Limits and possible use cases?

A quick walkthrough on most common ML/DL/ANN models that can be running on the current stacks.
Acknowledgements

Page 15 of 16

Run A Deep Learning Demo with Python3 Binding to HealthShare (Part I1)
Published on InterSystems Developer Community (https://community.intersystems.com)

#Artificial Intelligence (AD#Beginner #Machine Learning (ML) #Python #HealthShare

Source
URL:https://community.intersystems.com/post/run-deep-learning-demo-python3-binding-healthshare-part-ii

Page 16 of 16

https://community.intersystems.com/tags/artificial-intelligence-ai
https://community.intersystems.com/tags/beginner
https://community.intersystems.com/tags/machine-learning-ml
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/healthshare
https://community.intersystems.com/post/run-deep-learning-demo-python3-binding-healthshare-part-ii

