
Apache HTTPD Web Server Configuration for HealthShare
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mark Bolinsky · Feb 5, 2019 9m read

Apache HTTPD Web Server Configuration for HealthShare
There are often questions surrounding the ideal Apache HTTPD Web Server configuration for HealthShare. The
contents of this article will outline the initial recommended web server configuration for any HealthShare product.

As a starting point, Apache HTTPD version 2.4.x (64-bit) is recommended. Earlier versions such as 2.2.x are
available, however version 2.2 is not recommended for performance and scalability of HealthShare.

Apache Configuration

Apache API Module without NSD

HealthShare requires the installation option Apache API Module without NSD. The version of the dynamically linked
modules depends on the Apache version:

CSPa24.so (Apache Version 2.4.x)

The configuration of Caché Server Pages in the Apache httpd.conf is best left to be performed by the HealthShare
installation that is detailed further on in this document. However the configuration can be performed manually. For
more information please see Apache Configuration Guide in the InterSystems documentation: Recommended
Option: Apache API Module without NSD (CSPa24.so)

Apache Multi-Processing Module (MPM) Recommendations

Apache Prefork MPM Vs. Worker MPM

Apache HTTPD web server comes with three Multi-Processing Modules (MPM) - Prefork, Worker, and Event. The
MPMs are responsible for binding to network ports on the machine, accepting requests, and dispatching children to
handle the requests. By default, Apache is usually configured with Prefork MPM which does not scale well for high
transaction or high concurrent user workloads.

For HealthShare production systems, the Apache MPM Worker should be enabled for performance and scalability
reasons. Worker MPM is preferred because of the following:

Prefork MPM uses multiple child processes with one thread each and each process handles one
connection at a time. When using Prefork, concurrent requests suffer because as each process can only
deal with a single request at a time the requests are queued until a server process becomes free.
Additionally in order to scale, more Prefork child processes are required which consumes significant
amounts of memory.
Worker MPM uses multiple child processes with many threads each. Each thread handles one connection
at a time, which is big help for concurrency and reduces memory requirements. Worker handles
concurrency better than Prefork because there will usually be free threads available to serve the requests
instead of single threaded Prefork processes which may be busy.

Apache Worker MPM Parameters

Page 1 of 6

https://community.intersystems.com/user/mark-bolinsky
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_ux#GCGI_ux_api
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_ux#GCGI_ux_api

Apache HTTPD Web Server Configuration for HealthShare
Published on InterSystems Developer Community (https://community.intersystems.com)

By using threads to serve requests, Worker is able to serve a large number of requests with fewer system
resources than the Prefork process-based server.
The most important directives used to control Worker MPM are ThreadsPerChild which controls the number of
threads deployed by each child process and MaxRequestWorkers which controls the maximum total number of
threads that may be launched.
The recommended Worker MPM common directive values are detailed in the table below:
Recommended Apache HTTPD Web Server Parameters Apache Worker MPM Directives Recommended ValueComments

MaxRequestWorkers Maximum # of HealthShare Clinical Viewer concurrent
users, or the for other HealthShare components set to
sum of all inbound Business Service pool sizes for all
defined interface productions.

* Note: If all unknown at time of configuration start with
a value of '1000'

MaxRequestWorkers sets the limit on the number of
simultaneously requests that will be served, i.e.
restricts the total number of threads that will be
available to serve clients.
MaxRequestWorkers is important to be set correctly
because if it is set too low then resources go to waste
and if too high then server performance will be
impacted.
Note that when more connections are attempted than
there are workers, the connections are placed into a
queue. The default queue can be adjusted with the
ListenBackLog directive.

MaxSpareThreads 250

MaxSpareThreads deals with idle threads on a server-
wide basis. If there are too many idle threads in the
server then child processes are killed until the number
of idle threads is less than this number. Increasing the
amount of spare threads higher than default is to
reduce the chance of re-spawning of processes.

MinSpareThreads 75

MinSpareThreads deals with idle threads on a server-
wide basis. If there is not enough idle threads in the
server then child processes are created until the
number of idle threads is greater than this number.
Reducing the amount of spare threads lower than the
default reduces the chance of re-spawning of
processes.

ServerLimit MaxRequestWorkers divided by ThreadsPerChild

Maximum value for MaxRequestWorkers for the lifetime
of the server. ServerLimit is a hard limit on the number
of active child processes, and must be greater than or
equal to the MaxRequestWorkers directive divided by
the ThreadsPerChild directive. With worker use this
directive only if your MaxRequestWorkers and
ThreadsPerChild settings require more than 16 server
processes (default).

Page 2 of 6

Apache HTTPD Web Server Configuration for HealthShare
Published on InterSystems Developer Community (https://community.intersystems.com)

Apache Worker MPM Directives Recommended Value Comments

StartServers 20

The StartServers directive sets the number of child
server processes created on startup. As the number of
processes is dynamically controlled depending on the
load, there is usually little reason to adjust this
parameter except to ensure the server is ready to
handle a lot of connections right when it's started.

ThreadsPerChild 25

This directive sets the number of threads created by
each child process, 25 by default. Keeping the default
value is recommended because increasing it could lead
to over-dependency with a single process.

For more information please see the relevant Apache version documentation:

Apache 2.4 MPM Common Directives

Example Apache 2.4 Worker MPM Configuration

This section details how to configure Worker MPM for a RHEL7 Apache 2.4 web server required to support up to
500 TrakCare concurrent users.

1. First check the MPM using the following command:

2. Edit the configuration file /etc/httpd/conf.modules.d/00-mpm.conf as required, by adding and removing the
comment character # so that only the Worker MPM modules is loaded. Modify the Worker MPM section with
the following values in the same order as below:

3. Restart Apache
4. After successfully restarting Apache, validate the worker processes by executing the below commands. You

should see something similar to the following confirming the httpd.worker process:

Apache Hardening

Apache Required Modules

Page 3 of 6

http://httpd.apache.org/docs/2.4/mod/mpm_common.html

Apache HTTPD Web Server Configuration for HealthShare
Published on InterSystems Developer Community (https://community.intersystems.com)

The installation of the official Apache distributed package will enable a specific set of Apache modules by default.
This default configuration of Apache will load these modules into each httpd process. It is recommended to disable
all modules that are not required for HealthShare for the following reasons:

reduce the httpd daemon process footprint.
reduce the chance of a segmentation fault from a rogue module.
reduce security vulnerabilities.

The table below details the Apache modules recommended for HealthShare. Any module that is not in the below
list can be disabled:
Module Name Description
alias Mapping different parts of the host file system in the document tree and for URL

redirection.
authz_host Provides access control based on client host name, IP address.
dir Provides for trailing slash redirects and serving directory index files.

headers To control and modify HTTP request and response headers
log_config Logging of the requests made to the server.
mime Associates the requested file name's extensions with the file's behavior and content
negotiation Provides for content selection of the document that best matches the clients

capabilities.
setenvif Allows for setting of environment variables based on characteristics of the request
status Displays server status and performance statistics

Disable Modules

Unnecessary modules should be disabled to harden the configuration that will reduce security vulnerabilities. The
customer is responsible for web server security policy. At a minimum the following modules should be disabled.
Modul Name Description
asis Sends files that contain their own HTTP headers
autoindex Generates directory indices and displays directory listing when no index.html file is

present
env Modifies the environment variable passed to CGI scripts and SSI pages
cgi cgi - Execution of CGI scripts
actions Executes CGI scripts based on media type or request method, action triggering on

Page 4 of 6

Apache HTTPD Web Server Configuration for HealthShare
Published on InterSystems Developer Community (https://community.intersystems.com)

Modul Name Description
requests

include Server-parsed HTML documents (Server Side includes)
filter Smart filtering of requests
version Handling version information in config files using IfVersion
userdir Mapping of requests to user-specific directories. i.e. ~username in URL will get

translated to a directory in server

Apache SSL/TLS
To protect data in transit, ensure confidentiality and authentication InterSystems recommends all TCP/IP
communication between HealthShare servers and clients be encrypted with SSL/TLS, and InterSystems also
recommends HTTPS be used for all communication between the users' browser client and the web server layer of
the proposed architecture. Please be sure to consult your organization's security policies to ensure compliance with
any specific security requirements of your organization.

The customer is responsible for supplying and managing the SSL/TLS certificates.
If using SSL certificates then add ssl_module (mod_ssl.so).

Additional Hardening Apache Parameters
To further harden the Apache configuration, make the following changes in the httpd.conf:

TraceEnable should be turned off to prevent potential Cross Site Tracing issues.

ServerSignature should be turned off so the web server version is not displayed.

Supplemental Apache Configuration Parameters

Keep-Alive

The Apache Keep-Alive setting allows the same TCP connection for HTTP communication to be used instead of
opening a new connection for each new request, i.e. Keep-Alive maintains a persistent connection between client

Page 5 of 6

Apache HTTPD Web Server Configuration for HealthShare
Published on InterSystems Developer Community (https://community.intersystems.com)

and server. When Keep-Alive option is enabled performance improvements come from reduced network
congestion, reduced latency in subsequent requests, and less CPU usage caused by opening connections
simultaneously. Keep-Alive is ON by default and HTTP v1.1 standard mandates that it should be presumed on.

However there are caveats to enabling Keep-Alive; Internet Explorer must be IE10 or higher to avoid known
timeout issues with older versions of IE. Also intermediaries like firewalls, load balancers and proxies etc. can
interfere with 'persistent TCP connections' and can result in unexpected closure of connections.

When enabling Keep-Alive, the Keep-Alive timeout also needs to be set. The default Keep-Alive timeout for Apache
is too low and needs to be increased for most configurations because issues may arise associated with broken
AJAX (i.e. hyperevent) requests. These issues can be avoided by ensuring the Keep-Alive timeout on the server is
greater than on the client. In other words the client should timeout and close the connection rather than the
server. Problems occur ‒ mostly in IE but to a lesser extent in other browsers ‒ when the browser tries to use a
connection (particularly for a POST) that it expects to be open.

See below for recommended KeepAlive and KeepAliveTimeout values for a HealthShare web server.

To enable KeepAlive in Apache, make the following changes in the httpd.conf:

CSP Gateway

For CSP Gateway KeepAlive parameter, leave the value at the default No Action because the KeepAlive status is
determined by the HTTP response headers for each request.

#Best Practices #InterSystems Business Solutions and Architectures #Performance #Red Hat Enterprise Linux
(RHEL) #SOAP #System Administration #HealthShare

 Source URL:https://community.intersystems.com/post/apache-httpd-web-server-configuration-healthshare

Page 6 of 6

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/intersystems-business-solutions-and-architectures
https://community.intersystems.com/tags/performance
https://community.intersystems.com/tags/red-hat-enterprise-linux-rhel
https://community.intersystems.com/tags/red-hat-enterprise-linux-rhel
https://community.intersystems.com/tags/soap
https://community.intersystems.com/tags/system-administration
https://community.intersystems.com/tags/healthshare
https://community.intersystems.com/post/apache-httpd-web-server-configuration-healthshare

