
Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Michelle Stolwyk · Jan 2, 2019 10m read

Perforce Example of Shared Development with Atelier
One of the many benefits of using Atelier for your ObjectScript development is its integration with a wide range of
source control systems. This integration enables you to use modern development workflows which increase
collaboration while minimizing the risk inherent to volatile code bases.

Veteran ObjectScript developers can tell you about the workarounds that were needed before they could
use source control systems with products like Caché and Ensemble. One of these was to treat the data store itself
effectively as a code repository. And so shared development environments became essential for many of our
customers to be productive and successful.

For code shops that rely on shared development environments, adopting Atelier might seem too complicated. This
article aims to provide a practical example to guide your team towards success with Atelier.

You can find an overview of the problems and solutions in this article here, which is a good place to start. This
article assumes that you are familiar with the concepts introduced there.

Configuring Centralized Source Control
Once your team has chosen a centralized source control system, some configuration steps are still necessary.

1. Organize individual branches to represent one namespace on one instance

2. Enable exclusive locking on the entire code base

By taking these steps, we transfer the responsibility of version control from the server instance to the source control
system.

In this example, we will illustrate this setup and resulting workflow with Perforce. Another popular centralized
source control system is Subversion. Your team should research the many options available considering your
team’s unique needs. You have a partner in your InterSystems Sales team to guide you through this process and
answer any questions.

Know Your Code Base

Step 0 is to understand your code base. In this example, our team at Company Inc. has a common library
namespace along with namespaces that represent specialized code stored in %SYS, an application, and personal
developer sandboxes. In addition, the team has separate instances for testing purposes and for live systems in
production. All of these rely on Perforce for version control and on Jenkins to manage the development to
deployment pipeline.

Page 1 of 10

https://community.intersystems.com/user/michelle-stolwyk
https://community.intersystems.com/post/source-control-shared-development-instance

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

Now that we’ve laid out all the relevant namespaces, it should be clear how these would look in source control. The
repository is indicated as //CompanyInc in the table below.
Path Description

//CompanyInc/DEV/_SYS A space for specialized code stored in %SYS in
development

//CompanyInc/DEV/Common A space for common library files in development

//CompanyInc/DEV/MyApp A space for application files in development

//CompanyInc/DEV/Dev1 A sandbox space for developer Dev1

//CompanyInc/DEV/Dev2 A sandbox space for developer Dev2

//CompanyInc/TEST/_SYS A space for specialized code stored in %SYS in test

//CompanyInc/TEST/Common A space for common library files in test

//CompanyInc/TEST/MyApp A space for application files in test

//CompanyInc/PROD/_SYS A space for specialized code stored in %SYS in
production

//CompanyInc/PROD/Common A space for common library files in production

//CompanyInc/PROD/MyApp A space for application files in production

Lock Your Files

Once you’ve organized your code base such that each namespace on each instance is isolated in source control, it
is time to configure exclusive locks and determine if exclusive locks are inappropriate for any files.

Page 2 of 10

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

You can find instructions on how to configure exclusive locks with Perforce here. It is possible to do from the
command line or from the graphical interface P4V.

There are some files for which restricting access will significantly reduce productivity. Your team should discuss the
tradeoffs involved when determining an exclusive lock blacklist. You may determine that some especially volatile
files are better off not being restricted by exclusive locking due to how low risk changes typically are. Your team
should also consider which files are touched by automated tests. Any file whose state must be guaranteed for the
results of automated tests to be valuable should not be on an exclusive lock blacklist.

Note that exclusive locks are most valuable in areas of the code base where complicated or large changes by
multiple developers are regularly expected. This situation should generally only be the case for
shared development instances. Test and production instances should not be modified by developers directly since
they are expected to be the most stable environments. Instead, these instances should load a snapshot of the code
base that meets certain stability or other requirements. (You can learn more about how tools like Jenkins can help
your team implement such solutions here.)

Once exclusive locks are configured, developers are required to check out files before making changes and
compiling those changes on the shared instance. As a result, all changes on the shared instance are traceable and
can be easily reverted or merged with other changes via the source control system.

Never Make Changes Outside of Source Control

Developers on your team might be tempted to make changes outside of source control as they learn this new
workflow. Or maybe your team has user interfaces that make changes directly on the server instance like
the Interoperability editors from Management Portal.

Be warned. Your team can get into trouble if someone tries to work around the restrictions of your source control
system. You can use the server-side Audit Log to track any such changes.

1. Open the Management Portal

2. Using the menu navigate to System Administration > Security > Auditing > Configure System Events

3. Enable “%System/%System/RoutineChange” by clicking Change Status in the same row

4. Your instance is now configured to audit changes to source code on the instance

5. From the Management Portal home page using the menu navigate to System Administration > Security >
Auditing > View Audit Database

6. Select “RoutineChange” in the Event Name drop down

7. Click the Search button

Auditing is silent, so you won’t receive a notification when an unexpected change is made. How can your team be
made aware of these events?

Atelier provides a conflict resolution wizard which appears whenever synchronizing a change results in a conflict.
Each developer must ensure that their user preferences do not silence this guard. In Eclipse with Atelier installed,

Page 3 of 10

https://community.perforce.com/s/article/3114
https://learning.intersystems.com/course/view.php?id=672
https://learning.intersystems.com/course/view.php?id=672

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

go to Preferences > Atelier > Save Settings > disable “Ignore conflicts when synchronizing”. Otherwise, the
developer’s local workspace version will automatically overwrite whatever version is on the server and changes
made outside of source control will be lost.

If a conflict resolution wizard appears in this model, the developer should take the following steps.

1. Confirm that the Eclipse workspace has the latest revision of files from source control

2. Check the Audit Log for RoutineChange events with an eye for changes that occurred outside of source
control

3. Collaborate with the author of the conflicting change to merge changes via source control

None of these steps are necessary if developers embrace that source control is the source of truth and rely on it.
Files that are edited on the server instance should always be checked out from source control first.

An Example Workflow
Now that we’ve discussed the major concerns for using Atelier with shared development servers, we’re ready to
look at the typical workflow with our chosen source control system, Perforce. Also note that similar steps apply to
other Eclipse source control plugins.

Start by completing one-time configuration steps.

1. Install the Perforce plugin

1. Navigate to Help > Install New Software …

2. Complete the wizard

Work with: http://www.perforce.com/downloads/http/p4-eclipse/install/4.6

2. Connect to the Perforce server and your workspace

Page 4 of 10

http://www.perforce.com/downloads/http/p4-eclipse/install/4.6

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

Once all configuration steps are completed, the typical workflow should resemble the following.

1. Open Eclipse workspace

2. Open the Perforce perspective to update the workspace with latest source

Note: Files with a yellow triangle warning are not the latest version. Make sure to update these files at least.

3. Switch to the Atelier perspective

4. Check out file(s) to modify by right-clicking it and selecting corresponding menu option (Team > Check Out)

Page 5 of 10

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

5. Make changes in Atelier editor

6. Synchronize changes to shared development server using preferred method

7. Compile changes on shared development server instance using preferred method

8. Run tests

9. Complete work

10. Switch to the Perforce perspective

11. Verify changes in pending changelist using diff utility

Page 6 of 10

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

12. Submit changelist by right-clicking it and selecting corresponding menu option

Page 7 of 10

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

Studio users can also modify files on the shared development instance if they always check files out from their
Perforce client before editing and compiling. This approach is vulnerable to user error and is not generally
recommended. However, we have found that some customers that primarily use Atelier for development do still rely
on Studio for some features. If your team falls into this category, make sure to fully train your developers to ensure
files are checked out from source control before any changes are made.

Testing Your Change

You might be thinking that this workflow is overly simplified. What about testing changes to common files or
competing changes? How can multiple developers test changes to the same set of files? What about
dependencies? How can a developer trust the results of their testing on a shared development instance?

For starters, we highly recommend automating testing and change promotion through environments. Many of our
customers are using Jenkins for this purpose. You can find some pointers here to get you started. Implementing
this sort of infrastructure provides the control and traceability that your team needs to ensure stability and code
quality without blowing up the number of hours needed to meet high standards.

Second, tests become much more reliable when a separate test instance is used. These instances do not receive
changes directly from developers but instead pull a snapshot of the code base from source control. Promotion to a
test instance and running of automated tests can all be automated once a solution like Jenkins is available. Note
that a separate test instance can be useful even without a fully automated solution.

Page 8 of 10

https://learning.intersystems.com/course/view.php?id=672

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

Testing on a Development Instance

It is best to have a “sandbox” namespace available for each developer on shared development instances. These
namespaces provide a place to run controlled smoke tests before promoting a change to the final
destination namespace. Smoke tests look for basic bugs or common oversights. They are also often used to run
new unit tests that cover new features. A sandbox allows each developer to catch simple mistakes before they
affect the rest of the team, and provide a more stable environment for such tests. The developer should be
responsible for keeping their space up to date and the source control system should make this easy to do.

If necessary, developers can also check out files before running tests on common namespaces to guarantee the
shared instance state during testing. Common files shouldn’t be locked for longer than a few minutes typically, so
the type of tests run should not take long.

Testing on a Test Instance

Thorough testing should occur on a separate test instance. These tests can take much more than a few minutes.
Test results can be relied upon because the state of the test instance is limited by the version of the code base that
was pulled before beginning to run tests. This state should not be changed until all tests are completed.

Mapping Out the Sharp Edges
Hopefully this article has clarified how to modify source on a shared development instance using Atelier. We laid
out some major configuration and workflow concerns. Here are some additional potential concerns to keep in
mind.

No one should ever make changes outside of source control

Be careful not to use graphical editors from the Management Portal for example without checking out the
underlying file(s) from source control.

Don’t use server-side source control hooks

Make sure competing source control controls are not enabled. Either the client should be controlling, or the server
should be.

All changes must make it to the Eclipse workspace

Changes made directly to static files or changes made on the server via the command line must be synchronized to
the Eclipse workspace in order to add those changes to source control

Don’t block other developers by locking common files for long

Make your changes to common files as quickly as you can to avoid blocking other developers from making
progress.

Team scale determines how valuable an enterprise solution might be

Page 9 of 10

Perforce Example of Shared Development with Atelier
Published on InterSystems Developer Community (https://community.intersystems.com)

The recommendations made in this article is targeted for large teams. Smaller teams may not need an
enterprise solution, but can pick and choose which elements of it are useful.

There isn’t a one-size-fits-all solution to exclusive locking

Only your team can determine the trade-offs of implementing exclusive locking on your code base. In general, start
with an empty blacklist and nominate files for it based on bottlenecks. We recommend you reach out to your
InterSystems Sales team with any questions.

Let us know your experiences with any or all elements of this article. What are the best practices your team has
adopted?

Happy New Year from the Atelier team to the InterSystems developer community!

#Change Management #Perforce #Development Environment

 Source URL:https://community.intersystems.com/post/perforce-example-shared-development-atelier

Page 10 of 10

https://community.intersystems.com/tags/change-management
https://community.intersystems.com/tags/perforce
https://community.intersystems.com/tags/development-environment
https://community.intersystems.com/post/perforce-example-shared-development-atelier

