Importing code from external libraries
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Eduard Lebedyuk - pec 29,2018 gy read

Importing code from external libraries

Intro

Recently | reread this article by @Bernd Mueller. It's about calling DELFATE function from zlib library. In this article
I'll demonstrate several different approaches to callout libraries, we'll build the same functionality (compress
function) in several different languages and compare them.

NodeJS

Let's start with NodeJS. I'm taking the code almost directly from Bernd's article, except it does not use files, but
rather direct http connection to pass data. For production use, it would be better to pass request as a body and
encode both request and response as base64. Still, here's the code:

/lzlibserver.js
const express = require(' express');
const zlib = require('zlib");

var app = express();

app.get('/zlibapi/:text', function(req, res) {
res.type('application/json');

var text=req.parans.text;

try {
zlib.deflate(text, (err, buffer) => {
if (terr) {
res. status(200).send(buffer.toString('binary'));
} else {
res.status(500).json({ "error" : err.nessage});
/1 handl e error
}
1
}
catch(err) {
res.status(500).json({ "error" : err.nessage});
return;
}

1)
app. | i sten(3000, function(){
consol e.l og("zlibserver started");

1),

Page 1 of 5

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/story-support-how-quest-raw-deflate-compressiondecompression-function-leads-node-callout-server
https://community.intersystems.com/user/bernd-mueller
https://zlib.net/
https://github.com/intersystems-ru/zlibisc/blob/master/node/zlibserver.js

Importing code from external libraries
Published on InterSystems Developer Community (https://community.intersystems.com)

To start it execute in OS bash (assuming node and npm installed):

cd <repo>\node
npm i nstall
node ./zlibserver.js

We're running on port 3000, reading input string from request and returning compressed data in response as is. On
a Caché side http request is used to interact with this api:

/11 NodelS i npl enentation

/1] do ##class(isc.zlib.Test).node()

Ol assMet hod node(text As ¥string = "Hello Wrld", Qutput response As ¥Btring) As %bta
tus

{
kill response
set req = ##cl ass(%Net . Ht t pRequest) . %New()
set req. Server = "local host"
set req.Port = 3000
set req.Location = "/zlibapi/" _ text
set sc = req. Get(,, $$$NO
qui t: $$$1 SERR(sc) sc
set response = req. Htt pResponse. Dat a. Read($$$MaxSt ri ngLengt h)
quit sc
}

Note, that I'm setting the third argument set sc = req.Get(,,$$3NO) - reset to zero. If you're writing interface to the
outside http(s) server it's best to reuse one request object and just modify it as needed to perform new requests.

Java

Java Gateway allows calling arbitrary Java code. Coincidently Java has Deflater class which does exactly what we
need:

package i sc. zlib;

i mport java.util.Arrays;
i mport java.util.zip.Deflater;

public abstract class Java {

public static byte[] conpress(String inputString) {
byte[] output = new byte[inputString.length()*3];
try {
/1 Encode a String into bytes
byte[] input = inputString.getBytes("UTF-8");

/1 Conpress the bytes

Defl ater conpresser = new Deflater();

conpresser. setlnput (i nput);

conpresser. finish();

i nt conpressedDat aLength = conpresser. defl at e(out put);

Page 2 of 5

https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GNET_http
https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=EJVG
https://docs.oracle.com/javase/8/docs/api/java/util/zip/Deflater.html

Importing code from external libraries
Published on InterSystems Developer Community (https://community.intersystems.com)

conpresser. end();
out put = Arrays. copyOf Range(out put, 0, conpressedDatalength);

} catch (java.io.UnsupportedEncodi ngExcepti on ex) {
/1 handl e

}

return output;

The problem with this implementation is that it returns byte[] which becomes a Stream on Caché side. | have tried
to return a string, but hadn't been able to found how to form proper binary string from byte[]. If you have any ideas
please leave a comment.

To run it place jar from releases page into <instance>/bin folder, load ObjectScript code into your instance and
execute:

wite $System Status. Get ErrorText (##cl ass(isc.zlib.Uils).createGateway())
wite $System Status. Get Error Text (##cl ass(isc.zlib.Uils).updatedar())

Check createGateway method before running the command. Second argument javaHome assumes that
JAVAHOME environment variable is set. If it does not, specify home of Java 1.8 JRE as a second argument. After
installing run this code to get compressed text:

set gateway = ##class(isc.zlib.Uils).connect()
set response = ##class(isc.zlib.Java).conpress(gateway, text)

C

An InterSystems Callout library is a shared library that contains your custom Callout functions and the enabling
code that allows Caché to use them.

Here's our Callout library:

#define ZF _DLL

/1 Ugly W ndows hack
#i f ndef ul ong

t ypedef unsigned | ong ul ong;
#endi f

#i nclude "string. h"
#i ncl ude "stdio. h"
#i nclude "stdlib.h"
#i nclude "zlib. h"
#i ncl ude <cdzf. h>

i nt Conpress(char* istream CACHE EXSTRP retval)
{

ul ong srcLen = strlen(istrean)+1; /1 +1 for the trailing “\0°
ul ong destlLen = conpressBound(srclLen); // estimte size needed for the buffer

Page 3 of 5

https://github.com/intersystems-ru/zlibisc/releases
https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=BGCL_library

Importing code from external libraries
Published on InterSystems Developer Community (https://community.intersystems.com)

char* ostream = nal | oc(destLen);

int res = conpress(ostream &destlen, istream srclLen);

CACHEEXSTRKI LL(retval);

if (! CACHEEXSTRNEWretval, destLen)) {return ZF_FAI LURE;}
mencpy(retval - >str.ch, ostream dest Len); /1 copy to retval->str.ch
return ZF_SUCCESS;

}

ZFBEA N
ZFENTRY(" Conpress", "cJ", Conpr ess)
ZFEND

To run it place dll or so files from releases page into <instance>/bin folder. Repository also contains build scripts for
Windows and Linux, execute them to build your own version.
Linux prerequisites:

apt install build-essential zliblg zliblg-devel

Windows prerequisites: WinBuilds - comes with zlib.

To interact with callout library execute:

set path = ##class(isc.zlib.Test).getLibPath() //get path to library file

set response = $ZF(-3, path, "Conpress", text) /1 execute function
do $ZF(-3, "") /lunload library
System

A little unexpected in an article about callout mechanisms, but Caché also has built-in Compress (and Decompress
function). Call it with:

set response = $extract ($SYSTEM Wil . Conpress(text), 2, *-1)

Remember that searching the docs or asking the questions here on the community may save you some time.

Comparison

I have run simple tests (1Kb text, 1 000 000 iterations) on Linux and Windows and got these results.

Windows:

Method --------- Callout --------- System--------- Java--------- Node---------
Time 22,77 33,41 152,73 622,51
Speed (Kb/s) 43912 29927 6547 1606
Overhead, % -/- 46,73% 570,75% 2633,90%
Linux:

Method --------- Callout --------- System--------- Java--------- Node---------
Time 76,35 76,49 147,24 953,73
Speed (Kb/s) 13097 13072 6791 1049
Overhead, % -/- 0,19% 92% 1149%

To run tests load code and call:

Page 4 of 5

https://github.com/intersystems-ru/zlibisc/releases
http://win-builds.org/doku.php
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Util#METHOD_Compress

Importing code from external libraries
Published on InterSystems Developer Community (https://community.intersystems.com)

do ##class(isc.zlib.Test).test(textLength, iterations)

Conclusion

With InterSystems products, you can easily leverage existing code in other languages. However, choosing correct
implementation is not always easy, you need to take several metrics into account, such as development speed,
performance, and maintainability. Do you need to run on different operating systems? Finding answers to these
guestions can help you decide on the best implementation plan.

Links

° m

* Binaries

¢ Hittp requests
¢ Java Gateway

e Callout library
* Compress function

#Beginner #Callout #Java #Node.js #JavaScript #Caché

Source URL:https://community.intersystems.com/post/importing-code-external-libraries

Page 5 of 5

https://github.com/intersystems-ru/zlibisc/
https://github.com/intersystems-ru/zlibisc/releases
https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GNET_http
https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=EJVG
https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=BGCL_library
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.Util#METHOD_Compress
https://community.intersystems.com/tags/beginner
https://community.intersystems.com/tags/callout
https://community.intersystems.com/tags/java
https://community.intersystems.com/tags/nodejs
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/importing-code-external-libraries

