Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Dmitry Maslennikov - Novs, 2018 13y read

Abnormal programming with InterSystems

| bet that not everyone familiar with InterSystems Caché knows about Studio extensions for working with the source
code. You can actually use the Studio to create your own type of source code, compile it into interpretable (INT)
and object code, and sometimes even add code completion support. That is, theoretically, you can make the Studio
support any programming language that will be executed by the DBMS just as well as Caché ObjectScript. In this
article, I will give you a simple example of writing programs in Caché Studio using a language that resembles
JavaScript. If you are interested, please read along.

If you go to the SAMPLES namespace, you will find an example of working with user-defined file types. The
example suggests opening a document of the “Example User Document (.tst)” type, and there is only one file of this
type called TestRoutine. TST, which, in fact, is generated on the go. The class required for working with this file type
is called Studio.ExampleDocument. Let’s not get into this example too deeply and create our own instead. The
".JS" file type is already being used in the Studio and JavaScript that we want to support is not exactly the original
JavaScript. Let’s call it CacheJavaScript and the file type will be ".CJS". To start off, create a %CJS.StudioRoutines
class as a subclass of the %Studio.AbstractDocument class and add the support of the new file type to it.

/1l The extension name, this can be a comma separated list of extensions if this clas
s supports nore than one

Proj ection Regi sterExtension As %roj ecti on. St udi oDocunent (Docunent Descri ption = "Cac
héJavaScri pt Routine", Docunent Extension = "cjs", Docunmentlcon = 1, DocunentType = "J
s');

* DocumentDescription— displayed as the type description in the open file window in the list of filters;
* DocumentExtension— the extension of the files that will be processed by this class;
* Documenticon— the icon number starts from zero; the following icons are available:

* DocumentType— this type will be used for code and error highlighting; the following types are available:
°o INT— Cache Object Script INT code
© MAC- Cache Object Script MAC code
°o INC- Cache Object Script macro include
o CSP— Cache Server Page
o CSR— Cache Server Rule
°o JS— JavaScript code
o CSS— HTML Style Sheet
o XML- XML document
o XSL— XML transform
o XSD— XML schema
° MVB- Multivalue Basic mvb code
° MVI- Multivalue Basic mvi code

We will now implement all the necessary methods for supporting the new source code type in the Studio.

Li st Execut e and Li st Fet ch methods are used for obtaining a list of files available in the namespace and for
showing them in the open file dialogue.

Cl assMet hod Li st Execut e(ByRef qHandle As %Binary, Directory As ¥String, Flat As %Bool
ean, System As %Bool ean) As %St at us

Page 1 of 11

https://community.intersystems.com/user/dmitry-maslennikov-5

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

Set gHandl e=$l i stbuild(Directory, Fl at, System"")
Qit $$3K
}

O assMet hod Li st Fet ch(ByRef gHandl e As 9%Bi nary, ByRef Row As %.ist, ByRef AtEnd As %
nteger = 0) As UStatus [PlaceAfter = ListExecute]

{
Set Row="", At End=0
If gqHandl e="" Set AtEnd=1 Quit $$$XK
If $list(qHandle)'=""|| ($list(gHandl e, 4)=1) Set AtEnd=1 Quit $$$XK
set At End=1
Set rtnNane=$li st get (gHandl e, 5)
For {
Set rtnName=$or der (*rCIS(rtnNane)) Qui t:rtnName=""
conti nue: $get (*r CIS(rt nName, «LANG»)) ' =«CIS»
set timeStanp=$zdateti ne($get (*rCIS(rtnNane, 0)), 3)
set size=+$get (*r CIS(rtnName, 0, «Sl ZE»))
Set Row=$listbuild(rtnName_".cjs",tinmeStanp,size,"")
set At End=0
set $list(qHandl e, 5) =rt nNane
Qui t
}
Quit $$IK
}

We will store the description of the programs in the *r CJS global, and the Li st Fet ch method will traverse this
global to return strings containing the following: name, date, and size of the found file. In order for the results of

being displayed in the dialogue, you need to create an Exi st s method that checks whether a file with such a
name exists.

/// Return 1 if the routine 'name' exists and O if it does not.
Cl assMet hod Exi sts(name As ¥String) As %Bool ean

{

Set rtnNanme = $pi ece(nane,".", 1, $length(nane,".")-1)

Set rtnNanmeExt = $pi ece(nane,".", $l engt h(nane,". "))

Quit $data(”rCIS(rtnNane)) &&($get (~r CIS(rt nName, «<LANG»)) =$zconvert (rt nNaneExt , «U»
))
}

The Ti meSt anp will return the date and time of the program. The result is also shown in the file open dialogue.

/1] Return the tinmestanp of routine '"nane' in %imeStanp format. This is used to dete
rmne if the routine has
/1l been updated on the server and so needs reloading fromStudio. So the format shou
I d be $zdateti me($horol og, 3),
/1] or "" if the routine does not exist.
O assMet hod Ti neStanp(name As %6tring) As % meStanp
{
Set rtnNane = $piece(nane,".", 1, $l engt h(nane,".")-1)
Set tinmeStanp=%$zdatetine($get (*rCIS(rtnNane, 0)), 3)
Quit tineStanp
}

We will now need to load the program and save the changes in the file. The text of the program, line by line, is

Page 2 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

stored in the same *r CJ S global.

/1] Load the routine in Nanme into the stream Code
Met hod Load() As %status

{
set source=.. Code
do source. C ear ()
set pCodeG\=$nane(”~r CJS(.. Short Nane, 0))
for pLine=1:1: $get (@PCodeGN@ 0), 0) {
do source. WiteLi ne(@CodeGN@ pLi ne))
}
do source. Rewi nd()
Quit $$$3XK
}

/1] Save the routine stored in Code
Met hod Save() As %stat us

{
set pCodeG\=$nane(”~r CJS(.. Short Nane, 0))
kill @CodeGN
set @CodeGN\=%$zti mest anp
Set .. Code. Li neTer ni nat or =$char (13, 10)
set source=. . Code
do source. Rewi nd()
VHI LE ' (source. At End) ({
set pCodeLi ne=sour ce. ReadLi ne()
set @CodeG\N@ $i ncrerment (@CodeGN@ 0))) =pCodelLi ne
}
set @CodeG\N@ «Sl| ZE») =. . Code. Si ze
Qi t $$IK
}

Here comes the most interesting part: compilation of our program. We will compile into INT code and therefore
have full compatibility with Caché. This article is just an example, which is why | used just a small fraction of the
capabilities of CachéJavaScript: declaration of variables (var), reading (r ead), and data output (pri nt | n).

/11 Conpil eDocunent is called when the docunent is to be conpiled
/11 1t has already called the source control hooks at this point
Met hod Conpi | eDocunent (ByRef qstruct As ¥%string) As %6t atus
{
Wite !, «Conpile: ,,..Nane
Set conpi | edCode=##cl ass(%Routi ne). % penl d(.. Short Nanme_“. | NT»)
Set conpi | edCode. Gener at ed=1
do conpi |l edCode. d ear ()

do conpil edCode. WiteLine(" ;generated at "_$zdateti nme($zti mestanp, 3))
do .. Gener at el nt Code(conpi | edCode)

do conpi | edCode. %Gave()
do conpi | edCode. Conpi | e()
Qit $K

}

Met hod Gener at el nt Code(aCode) [Internal]

{
set var Mat cher =##cl ass(%Regex. Matcher) . %New("[\t]*(var[\t]+)2(\W\wd]*)[\t]*(
V=] (*))?)

Page 3 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

set printl nMat cher =##cl ass(%Regex. Mat cher) . 9%New("[\t]*(7?:console\.log|println)\(
(["\)14H\V)?")
set readMat cher =##cl ass(%Regex. Mat cher) . 9%New("[\t]*read\ ((.*)\,(.*)\)")

set source=.. Code
do source. Rewi nd()
whil e 'source. AtEnd {
set tLine=source. ReadLi ne()

set pos=1
while $locate(tLine,"(([AMN"\V""\;\r\n] [NV A" "] [AVA""]T*[\VA""])+H) ", pos, pos, tCo
de) {
set tPos=1
if $zstrip(tCode,"*W)="" {
do aCode. Wit eLi ne(t Code)
conti nue
}
i f varMat cher. Mat ch(t Code) {
set var Nane=var Mat cher . G oup(2)
i f varMatcher.Goup(l)'="" {
do aCode. Wi teLine($char (9) _«new ,_var Nane)
}
i f varMatcher. Goup(3)'="» {
set expr=var Mat cher. G oup(4)
set expr=..Expression(expr)
do: expr' ="" aCode. Wi teLine($char (9)_«set ,_varName_“ = ,_expr)
}

conti nue

} elseif printlnMatcher. Match(t Code) {
set expr=printlnhMatcher. G oup(1l)
set expr=..Expression(expr)
do: expr' =“» aCode. WiteLine($char(9)_«Wite ,_expr_“,!»)

} elseif readMatcher. Mat ch(t Code) {
set expr=readMat cher. Group(1)
set expr=..Expression(expr)
set var=readMat cher. G oup(2)
do: expr' ="" aCode. Wi teLine($char(9)_«read ,_expr_“,»_var_",!")

}

G assMet hod Expression(tExpr) As %Btring

{
set matchers($i ncrenent (matchers), «matcher»)="(2sm) ([AMN"\V""]1*)\V+[\Vt]*(2:\"" ([~
POV (AT) (LA

set matchers(matchers, «repl acenent ») ="$1_""$2$3"" $4"

set mat chers($increment (mat chers), «mat cher») ="(2sm) ([AMN"\""]*)(2:\""([AMN""]T*)\""]
VNIV D VeV (MR

set mat chers(mat chers, «repl acenent ») ="$1"" $2$3"" _$4"

set mat chers($i ncrenent (mat chers), «matcher») ="(2sm) ([MN"\""T*)(2:\""([MN""]*)\""|
VA TN ([T

set nmatchers(nat chers, «repl acenent ») =" $1"" $2$3" " $4"

set tResult=t Expr

Page 4 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

for i=1:1:matchers {
set mat cher =##cl ass(%Regex. Mat cher) . ¥0New(mat cher s(i, «mat cher »))
set repl acement =$get (mat chers(i, «repl acenent »))

set mat cher. Text =t Resul t

set tResul t =mat cher. Repl aceAl | (repl acenent)

}

quit tResult
}

You can view the generated INT code for each compiled program or class. To do that, you will need to write a
Get & her method. It's pretty simple— its purpose is to return a comma-delimited list of programs that were
generated for the source code.

/1l Return other docunent types that this is related to.

/1l Passed a nanme and you return a conma separated list of the other docunents it is
related to

/1] or "" if it is not related to anything. Note that this can be passed a docunent o
f anot her type

/1] for exanple if your '"test.XXX docunent creates a 'test.INT" routine then it wll
al so be called

/1] with "test.INT'" so you can return '"test. XXX to conplete the cycle.

Cl assMet hod Get @t her (Name As %String) As %String

{
Set rtnName = $pi ece(Nane,".", 1, $l ength(Nane, ".")-1) _".INT"
Qui t: ##cl ass(%Rout i ne) . ¥%&EXi st sl d(rtnNane) rtnNanme
Qit ""

}

We implemented a method of blocking a program so that just one developer at a time could edit a program or class
on the server.

Don't forget about writing a method for deleting programs.

/1] Delete the routine 'nanme' which includes the routine extension
Cl assMet hod Del ete(nanme As %Btring) As %status

{
Set rtnNanme = $pi ece(nane,".", 1, $length(nane,".")-1)
Kill ~rCIS(rtnNane)
Quit $$3XK

}

/1l Lock the current routine, default nethod just unlocks the ~rCJS global with the n
anme of the routine.
/1] 1f it fails then return a status code of the error, otherwi se return $$$K
Met hod Lock(flags As ¥String) As %status
{
Lock +"rCJS(..Nanme):0 Else Quit $$$ERROR($$$CanNot LockRout i ne, . . Nane)
Qit $$3XK
}

/1l Unlock the current routine, default nmethod just unlocks the ~rCJS global with the
name of the routine
Met hod Unl ock(flags As %Gtring) As %status

{

Page 5 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

Lock -~rCJIS(.. Nane)
Qit $3XK
}

All right, we have written a class that allows us to work with our type of programs. However, we cannot write such a
program just yet. Let’s fix it. The Studio enables you to define templates and there are 3 ways of doing it: a simple
CSP file of a particular format, a CSP class inherited from the 4CSP. St udi oTenpl at eSuper class, and, finally, a
ZEN page inherited from %ZEN. Tenpl at e. st udi oTenpl at e, In our case, we will use the last option for
simplicity. Templates can be of 3 types as well: for creating new objects, just code templates, and add-ins, which
generate no output.

In our case, we will need a template for creating new objects. Let's make a new class called

%CJS. Routi neW zar d. Its content is pretty simple — you will need to describe a field for entering the program’s
name, then describe the name of the new program and its mandatory content for the Studio in the

%nTenpl at eAct i on method.

/1l Studio Tenpl ate:

/1l Create a new Cache JavaScri pt Routi ne.
O ass %CIS. Routi neW zard Extends %EN. Tenpl at e. studi oTenpl ate [StorageStrategy = ""

]
{

Par anet er TEMPLATENAME = "Cache JavaScri pt";

Par anet er TEMPLATETI TLE = "Cache JavaScript";

Par anet er TEMPLATEDESCRI PTION = "Create a new Cache JavaScript routine.";
Par anet er TEMPLATETYPE = "CQIS";

/11 What type of tenplate.
Par anmet er TEMPLATEMODE = "new';

/1] 1f this is a TEMPLATEMODE="new' then this is the nane of the tab
/1] in Studio this tenplate is dispayed on. If none specified then
/11l it displays on 'Custom tab.

Par amet er TEMPLATEGROUP As STRI NG

/1l This XM bl ock defines the contents of the body pane of this Studio Tenpl ate.
XDat a tenpl ateBody [XM_Nanmespace = "http://ww. i ntersystens.con zen"]

{

}

/1l Provide contents of description conponent.
Met hod %Get DescHTM.(pSeed As %Btring) As %stat us

{
}

Quit $$IK

/1l This is called when the tenplate is first displayed;
/11 This provides a chance to set focus etc.

dient Met hod onstartHandl er() [Language = javascript]
{

Page 6 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

/1 give focus to name
var ctrl = zenPage. get Conponent Byl d(' ctrl Routi neNane');
if (ctrl) {

ctrl.focus();

ctrl.select();

}

/11l Validation handler for formbuilt-into tenpl ate.
dientMethod formvalidationHandl er() [Language = javascript]

{
var rtnNanme = zenPage. get Conponent Byl d(' ctrl Routi neNane'). get Val ue();

if ("' == rtnNane) {
return fal se;

}

return true;

}

/1l This nmethod is called when the tenplate is conplete. Any
/1]l output to the principal device is returned to the Studio.
Met hod %OnTenpl at eAction() As %t at us

{
Set tRoutineNanme = .. %et Val ueByName(" Rout i neNanme")
Set Ysession. Data("Tenpl ate", "NAME') = tRoutineNane_".CJS"
Wite "// " _tRoutineNaneg,!
Quit $$K
}
}

That's it. You can now create your first program written in Caché JavaScript in the Studio.

Page 7 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

OK

B New X
Categories: Templates:
General
~CSP File DeepSee [ecl 5
Zen KPI BEYENIeqlsl
Custom

Cancel

Let’s call it “hello”.

Page 8 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

Studio Template
CaChe Javascn pt User: UnknownUser

Namespace: USER

Routine Name: * |hello

The source code in CachéJavaScript can look like this, for example:

/1 hello
console.log('Hello Wrld!");

var name='";

read(' What is your name? ', nane);
printin('Hello ' + name + 'I!");
Let's save it.

Page 9 of 11

Abnormal programming with InterSystems
Published on InterSystems Developer Community (https://community.intersystems.com)

g File Edit View Project Build Debug Tools Utilities Window Help

22 6088 a8 %6509« 3R =k:E N =T X NERR
4 2] hello.CJS *

1 // hello

2 console.log('"Hello World!");

3

4 var name='";

5 read ('"What is your name? ', name);

o println('Hello ' + name + '"!");

B ' Save As X
Look in: \USER
Name \ Type | Size| Modified \ Description |
Hespiuser CSP Application
File name: lhello.CJS | ‘ Save As
Files of type: | ﬂ Cancel

| iInclude System Ilemsé ¥ Show Generated

After save and compile we will see that int code was generated compiled as well successfully, in the output:

Conpilation started on 11/04/2018 12:57:00 with qualifiers 'ck-u'
Conpi l e: hello.CJS

Conpiling routine : hello.int

Conpi l ation finished successfully in 0.034s.

Let's look at another source.

Page 10 of 11

Abnormal programming with InterSystems

Published on InterSystems Developer Community (https://community.intersystems.com)

m Eile Edit View Project Build Debug Tools Utilities Window Help

q

N Edd 3 QA ¥ 5@

& hello.cJs] hello.INT

EIEIEIE

- ¥e=11E

E

l|;generated at 2018-11-04 09:57:00

O s W N

(@)}

Write "Hello World!"™,!

new name

set name = ""

read "What is your name? ", name, !
Write "Hello " name "!", !

We can now run it in the terminal

USER>d “hel |l o
Hel | o Worl d!

What

i s your nane? dai nor

Hel | o dai nor!

This is how you can describe any language (to a certain extent, of course) that you like and use it to code the
server-side business logic for the Caché/IRIS Data platform. There definitely will be problems with code highlighting

if this language is not supported by the Studio. This example demonstrates the work with programs, but can

definitely create Caché classes the same way. The possibilities are nearly limitless: you just need to write a lexical

parser, a syntax parser, and a full-fledged compiler, then come up with the right mapping between all Caché

Anyone willing to do it at home can download the source codes here in udl or xml.

#Caché #Studio #InterSystems IRIS

system functions and specific constructs in the new language. Such programs can also be exported and imported
with compilation, as it is done with any other programs in Caché.

Source URL:https://community.intersystems.com/post/abnormal-programming-intersystems

Page 11 of 11

https://gist.github.com/daimor/ece6ec04866f76e18efa8d94dd7e8e0c
https://gist.github.com/daimor/3923810dcd60126647b7
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/studio
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/abnormal-programming-intersystems

