
GraphQL for InterSystems Data Platforms
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Gevorg Arutiunian · Jul 6, 2018 6m read

GraphQL for InterSystems Data Platforms

GraphQL is a standard for declaring data structures and methods of data access that serves as a middleware layer
between the client and the server. If you’ve never heard about GraphQL, here is a couple of useful online
resources: here, here and here.

In this article, I will tell you how you can use GraphQL in your projects based on InterSystems technologies.

InterSystems platforms currently support several methods of creating client/server applications:

REST
WebSocket
SOAP

So what’s the advantage of GraphQL? What benefits does it provide compared with REST, for example?

GraphQL has several types of requests:

query - server requests for obtaining data, similar to GET requests recommended for fetching data using
REST.
mutation - this type is responsible for server-side data changes, similar to POST (PUT, DELETE) requests
in REST.
Both mutation and query can return data ‒ this comes in handy if you want to request updated data from the
server immediately after performing a mutation.
subscriptions - the same query type that will output data. The only difference is that a query is launched by
a page rendered on the client side while subscriptions are activated by mutations.

Page 1 of 5

https://community.intersystems.com/user/gevorg-arutiunian-0
http://graphql.org/
https://medium.freecodecamp.org/so-whats-this-graphql-thing-i-keep-hearing-about-baf4d36c20cf
https://blog.apollographql.com/graphql-vs-rest-5d425123e34b
https://blog.apollographql.com/the-anatomy-of-a-graphql-query-6dffa9e9e747

GraphQL for InterSystems Data Platforms
Published on InterSystems Developer Community (https://community.intersystems.com)

Key features and advantages of GraphQL

It’s up to the client to decide what data should be returned

One of the key features of GraphQL is that the structure and volume of returned data are defined by the client
application. The client application specifies what data it wants to receive using a declarative, graph-like structure
that closely resembles the JSON format. The response structure corresponds to that of the query.

Here is how a simple GraphQL query looks:

{
 Sample_Company {
 Name
 }
}

A response in the JSON format:

{
 "data": {
 "Sample_Company": [
 {
 "Name": "CompuSoft Associates"
 },
 {
 "Name": "SynerTel Associates"
 },
 {
 "Name": "RoboGlomerate Media Inc."
 },
 {
 "Name": "QuantaTron Partners"
 }
]
 }
}

Single endpoint

When using GraphQL to work with data, we always connect to a single endpoint, GQL server, and get different
data by changing the structure, fields, and parameters of our queries. REST, in contrast, uses multiple endpoints.

Let’s compare REST with GraphQL using a simple example:

Let’s assume that we need to load a user’s content. If we are using REST, we need to send three queries to the
server:

1. Get the user’s data by their id
2. Use their id to load their posts
3. Use their id to get a list of their followers/subscribers

Below is a REST map corresponding to these queries:

Page 2 of 5

GraphQL for InterSystems Data Platforms
Published on InterSystems Developer Community (https://community.intersystems.com)

 <Route Url="/user/:id" Method="GET" Call="GetUserByID"/>
 <Route Url="/user/:id/posts" Method="GET" Call="GetUserPostsByID"/>
 <Route Url="/user/:id/follovers" Method="GET" Call="GetUserFolloversByID"/>

In order to get a new data set, we will need to update this REST map with a new endpoint.

GraphQL handles this with a single query. To do that, just specify the following in the request body:

{
operationName: null, //a query can have a name (query TestName(...){...})
query: "query {
 User(id: "ertg439frjw") {
 name
 posts {
 title
 }
 followers(last: 3) {
 name
 }
 }
}",
variables: null // initialization of the variables used in the query
}

A REST map corresponding to this query:

 <Route Url="/graphql" Method="POST" Call="GraphQL"/>

Note that this is the only endpoint on the server.

Installing GraphQL and GraphiQL
In order to start using GraphQL, you need to complete a few steps:

1. Download the latest release from GitHub and import it to the necessary namespace
2. Go to the system management portal and create a new web application based on your InterSystems Data

Platform product (Caché, Ensemble or IRIS):
Name - /
Namespace - for example, SAMPLES
Handler class - GraphQL.REST.Main

3. GraphiQL ̶ a shell for testing GraphQL queries. Download the latest build or build from the source on your
own.

4. Create a new web application:
Name - /graphiql
Namespace - for example, SAMPLES
Physical path to CSP files - **C:\InterSystems\GraphiQL**

Let’s take a look at the result
Go to the following link in your browser http://localhost:57772/graphiql/index.html (localhost ̶ server, 57772 ̶
port)

Page 3 of 5

https://github.com/intersystems-ru/GraphQL/releases
https://github.com/intersystems-ru/GraphQL/releases
https://github.com/graphql/graphiql
http://localhost:57772/graphiql/index.html

GraphQL for InterSystems Data Platforms
Published on InterSystems Developer Community (https://community.intersystems.com)

I hope everything is clear with the Query and Response namespaces. A Schema is a document that is generated
for all stored classes in a namespace.

The schema contains:

Classes
Properties, arguments, and their types
Descriptions of all of the above generated from comments

Let’s take a closer look at a schema for the Sample_Company class:

GraphiQL also supports automatic code completion that can be activated by pressing the Ctrl + Space key
combination:

Queries
Queries can be simple and complex for several sets of data. Below is a sample query for data from to different
classes, Sample_Person and Sample_Company :

Filtering
At the moment, only strict equality is supported:

Pagination
Pagination is supported through 4 functions that can be combined to achieve the necessary result:

after: n ‒ all records with id greater than n
before: n ‒ all records with id smaller than n
first: n ‒ first n records
last: n ‒ last n records

Visibility areas
In most situations, the business logic of an application dictates that particular clients only have access to particular
namespace classes (role-based permissions). Based on that, you may need to limit class visibility for a client:

All classes in the namespace (GraphQL.Scope.All)
Classes inherited from a superclass (GraphQL.Scope.Superclass)
Classes belonging to a particular package (GraphQL.Scope.Package)

In order to change the method of visibility restriction, open the studio, switch to the necessary namespace, and
open the GraphQL.Settings class. It has a SCOPECLASS parameter with the default value of GraphQL.Scope.All
̶ this is the class containing the description of the class visibility interface in the namespace:

To change class visibility restrictions, you need to set one of the values provided above: GraphQL.Scope.Package
or GraphQL.Scope.Superclass.

If you picked GraphQL.Scope.Package, you will also need to go to that class and change the value of the Package
parameter to the name of the necessary package ‒ for instance, Sample. This will make all the stored classes from
this package fully available:

Page 4 of 5

GraphQL for InterSystems Data Platforms
Published on InterSystems Developer Community (https://community.intersystems.com)

If you picked GraphQL.Scope.Superclass, simply inherit from this class once again in the necessary classes::

Currently supported
Queries:

Basic
Embedded objects

Only many to one relation
List of simple types
List of objects

Currently under development
Queries:

Embedded objects
Support of relations of all types

Filtering
Support of inequalities

Plans

Mutaions
Aliases
Directives
Fragments

→ Link to the project repository
→ Link to the demo server

Issues Pull Requests are very welcome.
Keep an eye on our project updates!

#API #Caché #IRIS Analytics Architect #Ensemble #HealthShare #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/graphql-intersystems-data-platforms

Page 5 of 5

https://graphql.github.io/learn/queries/#aliases
https://graphql.github.io/learn/queries/#directives
https://graphql.github.io/learn/queries/#fragments
https://github.com/intersystems-community/GraphQL
http://37.139.6.217:57773/graphiql/index.html
https://community.intersystems.com/tags/api
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/iris-analytics-architect
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/tags/healthshare
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/graphql-intersystems-data-platforms

