
Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Eduard Lebedyuk · Jul 6, 2018 9m read

Continuous Delivery of your InterSystems solution using GitLab - Part
VIII: CD using ICM
In this series of articles, I'd like to present and discuss several possible approaches toward software development
with InterSystems technologies and GitLab. I will cover such topics as:

Git 101
Git flow (development process)
GitLab installation
GitLab Workflow
Continuous Delivery
GitLab installation and configuration
GitLab CI/CD
Why containers?
Containers infrastructure
CD using containers
CD using ICM

In this article, we'll build Continuous Delivery with InterSystems Cloud Manager. ICM is a cloud provisioning and
deployment solution for applications based on InterSystems IRIS. It allows you to define the desired deployment
configuration and ICM would provision it automatically. For more information take a look at First Look: ICM.

Workflow
In our Continuous Delivery configuration we would:

Push code into GitLab repository
Build docker image
Publish image to docker registry
Test it on a test server
If tests pass, deploy on a production server

Or in graphical format:

Page 1 of 8

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-index
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_icm

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

As you can see it's all pretty much the same except we would be using ICM instead of managing Docker containers
manually.

ICM configuration
Before we can start upgrading containers, they should be provisioned. For that we need to define defaults.json
and definitions.json, describing our architecture. I'll provide these 2 files for a LIVE server,
definitions for a TEST server are the same, defaults are the same except for Tag and
SystemMode values.

defaults.json:

{
 "Provider": "GCP",
 "Label": "gsdemo2",
 "Tag": "LIVE",
 "SystemMode": "LIVE",
 "DataVolumeSize": "10",
 "SSHUser": "sample",
 "SSHPublicKey": "/icmdata/ssh/insecure.pub",
 "SSHPrivateKey": "/icmdata/ssh/insecure",
 "DockerImage": "eduard93/icmdemo:master",
 "DockerUsername": "eduard93",
 "DockerPassword": "...",
 "TLSKeyDir": "/icmdata/tls",
 "Credentials": "/icmdata/gcp.json",
 "Project": "elebedyu-test",
 "MachineType": "n1-standard-1",
 "Region": "us-east1",
 "Zone": "us-east1-b",
 "Image": "rhel-cloud/rhel-7-v20170719",
 "ISCPassword": "SYS",
 "Mirror": "false"
}

definitions.json

[
 {
 "Role": "DM",
 "Count": "1",
 "ISCLicense": "/icmdata/iris.key"
 }
]

Inside the ICM container /icmdata folder is mounted from the host and:

TEST server definitions are placed in /icmdata/test folder
LIVE server definitions are placed in /icmdata/live folder

After obtaining all required keys:

keygenSSH.sh /icmdata/ssh

Page 2 of 8

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

keygenTLS.sh /icmdata/tls

And placing required files in /icmdata:

iris.key
gcp.json (for deployment to Google Cloud Platform)

Call ICM to provision your instances:

cd /icmdata/test
icm provision
icm run
cd /icmdata/live
icm provision
icm run

This would provision one TEST and one LIVE server with one standalone InterSystems IRIS instance on each.

Please refer to ICM First Look for a more detailed guide.

Build
First, we need to build our image.

Our code would be, as usual, stored in the repository, CD configuration in gitlab-ci.yml but in addition (to
increase security) we would store several server-specific files on a build server.

iris.key

License key. Alternatively, it can be downloaded during container build rather than stored on a server. It's rather
insecure to store in the repository.

pwd.txt

File containing default password. Again, it's rather insecure to store it in the repository. Also, if you're hosting prod
environment on a separate server it could have a different default password.

load_ci_icm.script

Initial script, it:

Loads installer
Installer does application initialization
Loads the code

set dir = ##class(%File).NormalizeDirectory($system.Util.GetEnviron("CI_PROJECT_DIR")
)
do ##class(%SYSTEM.OBJ).Load(dir _ "Installer/Global.cls","cdk")
do ##class(Installer.Global).init()
halt

Note that the first line is intentionally left empty.

Several things are different from previous examples. First of all we are not enabling OS Authentication as ICM

Page 3 of 8

http://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_icm

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

would interact with container instead of GitLab directly. Second of all I'm using Installer manifest to initialize our
application to show different approaches to initialization. Read more on Installer in this article. Finally we'll publish
our image in a Docher Hub as a private repo.

Installer/Global.cls

Our installer manifest looks like this:

<Manifest>
 <Log Text="Creating namespace ${Namespace}" Level="0"/>
 <Namespace Name="${Namespace}" Create="yes" Code="${Namespace}" Ensemble="" Data=
"IRISTEMP">
 <Configuration>
 <Database Name="${Namespace}" Dir="${MGRDIR}/${Namespace}" Create="yes" M
ountRequired="true" Resource="%DB_${Namespace}" PublicPermissions="RW" MountAtStartup
="true"/>
 </Configuration>

 <Import File="${Dir}MyApp" Recurse="1" Flags="cdk" IgnoreErrors="1" />
 </Namespace>

 <Log Text="Mapping to USER" Level="0"/>
 <Namespace Name="USER" Create="no" Code="USER" Data="USER" Ensemble="0">
 <Configuration>
 <Log Text="Mapping MyApp package to USER namespace" Level="0"/>
 <ClassMapping From="${Namespace}" Package="MyApp"/>
 </Configuration>

 <CSPApplication Url="/" Directory="${Dir}client" AuthenticationMethods=
"64" IsNamespaceDefault="false" Grant="%ALL" />
 <CSPApplication Url="/myApp" Directory="${Dir}" AuthenticationMethods=
"64" IsNamespaceDefault="false" Grant="%ALL" />
 </Namespace>
</Manifest>

And it implements the following changes:

1. Creates application Namespace.
2. Creates application code database (data would be stored in USER database).
3. loads code into application code database.
4. Maps MyApp package to USER namespace.
5. Creates 2 web applications: for HTML and for REST.

gitlab-ci.yml

Now, to Continuous Delivery configuration:

build image:
 stage: build
 tags:
 - master
 script:
 - cp -r /InterSystems/mount ci
 - cd ci
 - echo 'SuperUser' | cat - pwd.txt load_ci_icm.script > temp.txt

Page 4 of 8

https://community.intersystems.com/post/deploying-applications-intersystems-cache-installer

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

 - mv temp.txt load_ci.script
 - cd ..
 - docker build --build-
arg CI_PROJECT_DIR=$CI_PROJECT_DIR -t eduard93/icmdemo:$CI_COMMIT_REF_NAME .

What is going on here?

First of all, as docker build can access only subdirectories of a base build directory - in our case repository root, we
need to copy our "secret" directory (the one with iris.key, pwd.txt and load_ci_icm.script) into the
cloned repository.

Next, first terminal access requires a user/pass so we'd add them to load_ci.script (that's what empty line at
the beginning of load_ci.script is for btw).

Finally, we build docker image and tag it appropriately: eduard93/icmdemo:$CI_COMMIT_REF_NAME

where $CI_COMMIT_REF_NAME is the name of a current branch. Note that the first part of the image tag should
be named same as project name in GitLab, so it could be seen in GitLab Registry tab (instructions on tagging are
available in Registry tab).

Dockerfile

Building a docker image is done using Dockerfile, here it is:

FROM intersystems/iris:2018.1.1-released

ENV SRC_DIR=/tmp/src
ENV CI_DIR=$SRC_DIR/ci
ENV CI_PROJECT_DIR=$SRC_DIR

COPY ./ $SRC_DIR

RUN cp $CI_DIR/iris.key $ISC_PACKAGE_INSTALLDIR/mgr/ \
 && cp $CI_DIR/GitLab.xml $ISC_PACKAGE_INSTALLDIR/mgr/ \
 && $ISC_PACKAGE_INSTALLDIR/dev/Cloud/ICM/changePassword.sh $CI_DIR/pwd.txt \
 && iris start $ISC_PACKAGE_INSTANCENAME \
 && irissession $ISC_PACKAGE_INSTANCENAME -U%SYS < $CI_DIR/load_ci.script \
 && iris stop $ISC_PACKAGE_INSTANCENAME quietly

We start from the basic iris container.

First of all, we copy our repository (and "secret" directory) inside the container.

Next, we copy license key to mgr directory.

Then we change the password to the value from pwd.txt. Note that pwd.txt is deleted in this operation.

After that, the instance is started and load_ci.script is executed.

Finally, iris instance is stopped.

Note that I'm using GitLab Shell executor and not Docker executor. Docker executor is used when you need
something from inside of the image, for example, you're building an Android application in java container and you
only need an apk. In our case, we need a whole container and for that, we need Shell executor. So we're running
Docker commands via GitLab Shell executor.

Page 5 of 8

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/builder/
https://docs.gitlab.com/runner/executors/

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

Publish
Now, let's publish our image in a Docker Hub

publish image:
 stage: publish
 tags:
 - master
 script:
 - docker login -u eduard93 -p ${DOCKERPASSWORD}
 - docker push eduard93/icmdemo:$CI_COMMIT_REF_NAME

Note ${DOCKERPASSWORD} variable, it's a GitLab secret variable. We can add them in GitLab > Project >
Settings > CI/CD > Variables:

Job logs also do not contain password value:

Running with gitlab-runner 10.6.0 (a3543a27)
 on icm 82634fd1
Using Shell executor...
Running on docker...
Fetching changes...
Removing ci/
HEAD is now at 8e24591 Add deploy to LIVE
Checking out 8e245910 as master...
Skipping Git submodules setup
$ docker login -u eduard93 -p ${DOCKERPASSWORD}
WARNING! Using --password via the CLI is insecure. Use --password-stdin.

Page 6 of 8

https://docs.gitlab.com/ee/ci/variables/#protected-variables

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

Login Succeeded
$ docker push eduard93/icmdemo:$CI_COMMIT_REF_NAME
The push refers to repository [docker.io/eduard93/icmdemo]
master: digest: sha256:d1612811c11154e77c84f0c08a564a3edeb7ddbbd9b7acb80754fda97f95d1
01 size: 2620
Job succeeded

and on Docker Hub we can see our new image:

Run
We have our image, next let's run it on our test server. Here is the script.

run image:
 stage: run
 environment:
 name: $CI_COMMIT_REF_NAME
 tags:
 - master
 script:
 - docker exec icm sh -c "cd /icmdata/test && icm upgrade -image eduard93/icmdemo:
$CI_COMMIT_REF_NAME"

With ICM we need to run only one command (icm upgrade) to upgrade existing deployment. We're calling it by
running "docker exec icm sh -c " which executes a specified command inside the icm container. First we
mode into /icmdata/test where our ICM deployment definition is defined for a TEST server. After that we call
icm upgrade to replace currently existing container with a new container.

Test
Let's run some tests.

test image:
 stage: test
 tags:
 - master
 script:

Page 7 of 8

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GICM_using#GICM_using_deploy_manage_icmupgrade

Continuous Delivery of your InterSystems solution using GitLab - Part VIII: CD using ICM
Published on InterSystems Developer Community (https://community.intersystems.com)

 - docker exec icm sh -c "cd /icmdata/test && icm session -namespace USER -command
 'do \$classmethod(\"%UnitTest.Manager\",\"RunTest\",\"MyApp/Tests\",\"/nodelete\")'
| tee /dev/stderr | grep 'All PASSED' && exit 0 || exit 1"

Again, we're executing one command inside our icm container. icm session executes a command on a deployed
node. The command runs unit tests. After that it pipes all output to the screen and also to grep to find Unit Tests
results and exit the process successfully or with an error.

Deploy
Deploy on a Production server is absolutely the same as deploy on test, except for another directory for the LIVE
deployment definition. In the case where tests failed this stage would not be executed.

deploy image:
 stage: deploy
 environment:
 name: $CI_COMMIT_REF_NAME
 tags:
 - master
 script:
 - docker exec icm sh -c "cd /icmdata/live && icm upgrade -image eduard93/icmdemo:
$CI_COMMIT_REF_NAME"

Conclusion
ICM gives you a simple, intuitive way to provision cloud infrastructure and deploy services on it, helping you get into
the cloud now without major development or retooling. The benefits of infrastructure as code (IaC) and
containerized deployment make it easy to deploy InterSystems IRIS-based applications on public cloud platforms
such as Google, Amazon, and Azure, or on your private VMware vSphere cloud. Define what you want, issue a few
commands, and ICM does the rest.
Even if you are already using cloud infrastructure, containers, or both, ICM dramatically reduces the time and effort
required to provision and deploy your application by automating numerous otherwise manual steps.

Links

Code for the article
Test project
ICM Documentation
First Look: ICM

#Cloud #Containerization #Continuous Delivery #Continuous Integration #Tutorial #InterSystems IRIS

 Source
URL:https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-viii-
cd-using-icm

Page 8 of 8

https://github.com/intersystems-ru/GitLab/tree/master/icm
http://gitlab.eduard.win/test/docker
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GICM
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GICM_using
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/continuous-delivery
https://community.intersystems.com/tags/continuous-integration
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-viii-cd-using-icm
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-viii-cd-using-icm

