
DeepSee: Databases, Namespaces, and Mappings - Part 5 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Alessandro Marin · May 7, 2018 5m read

DeepSee: Databases, Namespaces, and Mappings - Part 5 of 5
The following post concludes the series with a list of all databases seen in the example for the fully flexible
architecture.

Databases and mappings
The databases described below should be defined for each namespace, except for the application code (which in
our example is stored in the APP-CODE database) that needs to be shared between namespaces. All namespaces
where the DeepSee implementation runs should use global mappings so that globals are stored in and read from
the correct database.

Database 1: DeepSee Cache

This database should store all DeepSee cache, that is the ^DeepSee.Cache.* and ^DeepSee.JoinIndex globals

Page 1 of 4

https://community.intersystems.com/user/alessandro-marin-1

DeepSee: Databases, Namespaces, and Mappings - Part 5 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

(Note: this page in the documentation lists more globals as DeepSee cache but the ^DeepSee.Cache.* globals are
by far the most important).

It is highly recommended map out the DeepSee cache globals to a dedicated database. The DeepSee cache
globals should never be journaled otherwise DeepSee will perform poorly and journal files might be huge.

Map the ^DeepSee.Cache.* and ^DeepSee.JoinIndex globals to this Database. Optionally, also map to this
Database the ^DeepSee.LastQuery and ^DeepSee.QueryLog globals, which are the globals storing a log for all
executed MDX queries.

Database 2: Implementation and Settings

This database contains the ^DeepSee.* globals, which include most of the DeepSee implementation. This
database includes all DeepSee cube or subject area definitions as well as information for many functionalities such
as Cube Manager (^DeepSee.CubeManager*), cubes definitions and settings (^DeepSee.Cubes,
^DeepSee.Dimensions), DeepSee items (^DeepSee.Folder*, ^DeepSee.FolderItem*), pivot variables
(^DeepSee.Variables), term lists (DeepSee.TermList), user settings (^DeepSee.DashboardSettings), DeepSee
overrides (^DeepSee.Overrides), and others.

It is recommended to store these functionalities in a separate Read-Write database to be able to journal and
regularly back this database up. By doing so it will possible to restore all definitions, settings, and user data in case
of a disruptive event.

Map all the remaining ^DeepSee* globals to this Database.

Database 3: DeepSee Updates

To keep the cubes updated with the source tables DeepSee uses the ^OBJ.DSTIME and ^DeepSee.Update
globals. On the Production Database, store the ^OBJ.DSTIME global in this database and mirror it to the Analytics
server. If the system is running an adhoc or a recent versions of Caché where ^DeepSee.Update is used (normally
available from Caché 2016.1.2), also store ^DeepSee.Update on this database. In this case, the database on the
Analytics server storing ^OBJ.DSTIME must be Read-Write to be able to purge ^OBJ.DSTIME after it is copied to
^DeepSee.Update. Notice that using this database is necessary when the database hosting data (APP-DATA in
our examples) is Read-only, otherwise it would be impossible to purge ^OBJ.DSTIME.

Journaling should be enabled on the Production server. Map ^OBJ.DSTIME and the ^DeepSee.Update to this
Database.

Database 4: Fact Tables

DeepSee cubes are based on a source class but populate and use fact and dimension tables. These tables contain
information for each record built in the cube and are used by DeepSee at runtime.

The choice of defining a dedicated database for fact, dimension tables, and indices is often taken to apply a
journaling setting different than other databases. Please read the note below on building cubes when journaling is
enabled. Another reason to map fact, dimension tables, and indices to a separate database might be to be able to
define a non-default block size (for example 16K block instead of the default 8K). Using a different block size can
help performance of MDX queries.

The fact and dimension tables are stored in the ^DeepSee.Fact* and ^DeepSee.Dimension* globals. DeepSee
indices are stored in ^DeepSee.Index, and ^DeepSee.JoinIndex global is used when cubes define relationships.
Map these globals to this database.

Database 5: DeepSee Indices

DeepSee indices are the indices for the cube’s Fact Table.

Page 2 of 4

https://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=D2IMP_setup_globals_alt

DeepSee: Databases, Namespaces, and Mappings - Part 5 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

The reason to store DeepSee indices in a separate database is the possible big size of the ^DeepSee.Index global.
Having a different journaling settings and defining a non-default block size could facilitate recovery and help
performance.

Journaling is optional: choose the same setting as in the previous database.

Map the ^DeepSee.Index global to this Database.

Note on journaling and building cubes

Users should be aware that building cubes deletes and recreates the cubes’ fact and index tables. This means that
when journaling is enabled the SETs and KILLs of globals such as ^DeepSee.Fact*, ^DeepSee.Index are logged in
journal files. As a result, rebuilding cubes might lead to a huge amount of entries in the journal files and possible
problems with disk space.

It is recommended to map fact tables and indices to one or two separate databases (Databases 4 and 5 above).

For the Fact and Indices databases journaling is optional and depends on the business needs. It might preferable
to disable journaling when cubes are relatively small and fast to build, or cubes are scheduled to rebuild
periodically.

Enable journaling on this database when cubes are relatively big and it takes too long to rebuild them. The ideal
case to keep journaling on is when cubes are in a stable state and only get periodically synchronized, but not built.
One way to safely build cubes is to temporarily disable journaling for the Fact and Indices databases (Databases 4
and 5, respectively).

Summary

Database Globals to map Function Settings

1 - Source data Get data from Production Mirrored from Production.

Share with all namespaces

2 - Source code Split code from data Share with all namespaces

3 - DeepSee Cache ^DeepSee.Cache.*

^DeepSee.JoinIndex

^DeepSee.LastQuery

^DeepSee.QueryLog

Allow journaling other databases
while keeping the DeepSee cache
non-journaled

Disable journaling

4 - Implementation and Settings ^DeepSee.* Allows restoring the DeepSee
implementation and user settings

Enable journaling, backup
regularly

5 - DeepSee Updates ^OBJ.DSTIME

^DeepSee.Update

Allows keeping cubes current Mirrored from Production.

Keep Read-Write

6 - Fact Tables ^DeepSee.Dimension*

^DeepSee.Fact

Be able to journal or not

Block size can be changed

Journaling is optional

Page 3 of 4

DeepSee: Databases, Namespaces, and Mappings - Part 5 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

^DeepSee.JoinIndex

7 - DeepSee Indices ^DeepSee.Index Define this Database if cubes are
big and you need better
performance in queries/builds,
otherwise store with Fact Tables
(Database 5)

Journaling as in Fact Tables
database

Conclusions
This series outlines best practices related to databases and mappings that you should consider for a Business
Intelligence implementation using Caché and DeepSee. It is certainly possible to successfully deploy DeepSee
implementations using a smaller number of Databases than the ones recommended in this series, but this might
expose the implementation to limitations.

#Analytics #Beginner #Databases #Deployment #Mapping #Tutorial #InterSystems IRIS BI (DeepSee)

 Source URL:https://community.intersystems.com/post/deepsee-databases-namespaces-and-mappings-part-5-5

Page 4 of 4

https://community.intersystems.com/tags/analytics
https://community.intersystems.com/tags/beginner
https://community.intersystems.com/tags/databases
https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/mapping
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/intersystems-iris-bi-deepsee
https://community.intersystems.com/post/deepsee-databases-namespaces-and-mappings-part-5-5

