
Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

        Article      
 Eduard Lebedyuk  · May 10, 2018  9m read   
   
  

Continuous Delivery of your InterSystems solution using GitLab - Part
VII: CD using containers
In this series of articles, I'd like to present and discuss several possible approaches toward software development
with InterSystems technologies and GitLab. I will cover such topics as:

Git 101
Git flow (development process)
GitLab installation
GitLab Workflow
Continuous Delivery
GitLab installation and configuration
GitLab CI/CD
Why containers?
Containers infrastructure
CD using containers

In the first article, we covered Git basics, why a high-level understanding of Git concepts is important for modern
software development, and how Git can be used to develop software.

In the second article, we covered GitLab Workflow - a complete software life cycle process and Continuous
Delivery.

In the third article, we covered GitLab installation and configuration and connecting your environments to GitLab

In the fourth article, we wrote a CD configuration.

In the fifth article, we talked about containers and how (and why) they can be used.

In the sixth article let's discuss main components you'll need to run a continuous delivery pipeline with containers
and how they all work together.

In this article, we'll build Continuous Delivery configuration discussed in the previous articles.

Workflow
In our Continuous Delivery configuration we would:

Push code into GitLab repository
Build docker image
Test it
Publish image to our docker registry
Swap old container with the new version from the registry

Or in graphical format:

Page 1 of 8

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-i-git
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-ii-gitlab-workflow
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iii-gitlab-installation-and
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iv-cd-configuration
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-v-why-containers
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vi-containers-infrastructure


Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's start.

Build
First, we need to build our image.

Our code would be, as usual, stored in the repository, CD configuration in gitlab-ci.yml but in addition (to
increase security) we would store several server-specific files on a build server.

GitLab.xml

Contains CD hooks code. It was developed in the previous article and available on GitHub. This is a small library to
load code, run various hooks and test code. As a preferable alternative, you can use git submodules to include this
project or something similar into your repository. Submodules are better because it's easier to keep them up to
date. One other alternative would be tagging releases on GitLab and loading them with ADD command.

iris.key

License key. Alternatively, it can be downloaded during container build rather than stored on a server. It's rather
insecure to store in the repository.

pwd.txt

File containing default password. Again, it's rather insecure to store it in the repository. Also, if you're hosting prod
environment on a separate server it could have a different default password.

load_ci.script

Initial script, it:

Enables OS authentication
Loads GitLab.xml
Initializes GitLab utility settings
Loads the code

set sc = ##Class(Security.System).Get("SYSTEM",.Properties)
write:('sc) $System.Status.GetErrorText(sc)
set AutheEnabled = Properties("AutheEnabled")
set AutheEnabled = $zb(+AutheEnabled,16,7)
set Properties("AutheEnabled") = AutheEnabled
set sc = ##Class(Security.System).Modify("SYSTEM",.Properties)
write:('sc) $System.Status.GetErrorText(sc)
zn "USER"
do ##class(%SYSTEM.OBJ).Load(##class(%File).ManagerDirectory() _ "GitLab.xml","cdk")
do ##class(isc.git.Settings).setSetting("hooks", "MyApp/Hooks/")

Page 2 of 8

https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iv-cd-configuration
https://github.com/intersystems-ru/GitLab/releases
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://docs.docker.com/engine/reference/builder/#add


Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

do ##class(isc.git.Settings).setSetting("tests", "MyApp/Tests/")
do ##class(isc.git.GitLab).load()
halt

Note that the first line is intentionally left empty.

As some settings can be server-specific, it's stored not in the repository, but rather separately. If this initial hook is
always the same, you can just store it in the repository.

gitlab-ci.yml

Now, to Continuous Delivery configuration:

build image:
  stage: build
  tags:
    - test
  script:
    - cp -r /InterSystems/mount ci
    - cd ci
    - echo 'SuperUser' | cat - pwd.txt load_ci.script > temp.txt
    - mv temp.txt load_ci.script
    - cd ..
    - docker build --build-arg CI_PROJECT_DIR=$CI_PROJECT_DIR -t docker.domain.com/te
st/docker:$CI_COMMIT_REF_NAME .

What is going on here?

First of all, as docker build can access only subdirectories of a base build directory - in our case repository root, we
need to copy our "secret" directory (the one with GitLab.xml, iris.key,  pwd.txt and load_ci.script) into
the cloned repository.

Next, first terminal access requires a user/pass so we'd add them to load_ci.script (that's what empty line at
the beginning of load_ci.script is for btw).

Finally, we build docker image and tag it appropriately: 
docker.domain.com/test/docker:$CI_COMMIT_REF_NAME 

where $CI_COMMIT_REF_NAME is the name of a current branch. Note that the first part of the image tag should
be named same as project name in GitLab, so it could be seen in GitLab Registry tab (instructions on tagging are
available in Registry tab).

Dockerfile

Building docker image is done using Dockerfile, here it is:

FROM docker.intersystems.com/intersystems/iris:2018.1.1.611.0

ENV SRC_DIR=/tmp/src
ENV CI_DIR=$SRC_DIR/ci
ENV CI_PROJECT_DIR=$SRC_DIR

COPY ./ $SRC_DIR

RUN cp $CI_DIR/iris.key $ISC_PACKAGE_INSTALLDIR/mgr/ \
 && cp $CI_DIR/GitLab.xml $ISC_PACKAGE_INSTALLDIR/mgr/ \

Page 3 of 8

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/builder/


Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

 && $ISC_PACKAGE_INSTALLDIR/dev/Cloud/ICM/changePassword.sh $CI_DIR/pwd.txt \
 && iris start $ISC_PACKAGE_INSTANCENAME \
 && irissession $ISC_PACKAGE_INSTANCENAME -U%SYS < $CI_DIR/load_ci.script \
 && iris stop $ISC_PACKAGE_INSTANCENAME quietly

We start from the basic iris container.

First of all, we copy our repository (and "secret" directory) inside the container.

Next, we copy license key and GitLab.xml to mgr directory.

Then we change the password to the value from pwd.txt. Note that pwd.txt is deleted in this operation.

After that, the instance is started and load_ci.script is executed.

Finally, iris instance is stopped.

Here's the job log (partial, skipped load/compilation logs):

Running with gitlab-runner 10.6.0 (a3543a27)
  on docker 7b21e0c4
Using Shell executor...
Running on docker...
Fetching changes...
Removing ci/
Removing temp.txt
HEAD is now at 5ef9904 Build load_ci.script
From http://gitlab.eduard.win/test/docker
   5ef9904..9753a8d  master     -> origin/master
Checking out 9753a8db as master...
Skipping Git submodules setup
$ cp -r /InterSystems/mount ci
$ cd ci
$ echo 'SuperUser' | cat - pwd.txt load_ci.script > temp.txt
$ mv temp.txt load_ci.script
$ cd ..
$ docker build --build-arg CI_PROJECT_DIR=$CI_PROJECT_DIR -t docker.eduard.win/test/d
ocker:$CI_COMMIT_REF_NAME .
Sending build context to Docker daemon  401.4kB

Step 1/6 : FROM docker.intersystems.com/intersystems/iris:2018.1.1.611.0
 ---> cd2e53e7f850
Step 2/6 : ENV SRC_DIR=/tmp/src
 ---> Using cache
 ---> 68ba1cb00aff
Step 3/6 : ENV CI_DIR=$SRC_DIR/ci
 ---> Using cache
 ---> 6784c34a9ee6
Step 4/6 : ENV CI_PROJECT_DIR=$SRC_DIR
 ---> Using cache
 ---> 3757fa88a28a
Step 5/6 : COPY ./ $SRC_DIR
 ---> 5515e13741b0
Step 6/6 : RUN cp $CI_DIR/iris.key $ISC_PACKAGE_INSTALLDIR/mgr/  && cp $CI_DIR/GitLab
.xml $ISC_PACKAGE_INSTALLDIR/mgr/  && $ISC_PACKAGE_INSTALLDIR/dev/Cloud/ICM/changePas
sword.sh $CI_DIR/pwd.txt  && iris start $ISC_PACKAGE_INSTANCENAME  && irissession $IS
C_PACKAGE_INSTANCENAME -U%SYS < $CI_DIR/load_ci.script  && iris stop $ISC_PACKAGE_INS
TANCENAME quietly

Page 4 of 8



Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

 ---> Running in 86526183cf7c
.
Waited 1 seconds for InterSystems IRIS to start
This copy of InterSystems IRIS has been licensed for use exclusively by:
ISC Internal Container Sharding
Copyright (c) 1986-2018 by InterSystems Corporation
Any other use is a violation of your license agreement

%SYS>
1

%SYS>
Using 'iris.cpf' configuration file

This copy of InterSystems IRIS has been licensed for use exclusively by:
ISC Internal Container Sharding
Copyright (c) 1986-2018 by InterSystems Corporation
Any other use is a violation of your license agreement

1 alert(s) during startup. See messages.log for details.
Starting IRIS

Node: 39702b122ab6, Instance: IRIS

Username:
Password:

Load started on 04/06/2018 17:38:21
Loading file /usr/irissys/mgr/GitLab.xml as xml
Load finished successfully.

USER>

USER>

[2018-04-06 17:38:22.017] Running init hooks: before

[2018-04-06 17:38:22.017] Importing hooks dir /tmp/src/MyApp/Hooks/

[2018-04-06 17:38:22.374] Executing hook class: MyApp.Hooks.Global

[2018-04-06 17:38:22.375] Executing hook class: MyApp.Hooks.Local

[2018-04-06 17:38:22.375] Importing dir /tmp/src/

Loading file /tmp/src/MyApp/Tests/TestSuite.cls as udl

Compilation started on 04/06/2018 17:38:22 with qualifiers 'c'
Compilation finished successfully in 0.194s.

Load finished successfully.

[2018-04-06 17:38:22.876] Running init hooks: after

[2018-04-06 17:38:22.878] Executing hook class: MyApp.Hooks.Local

[2018-04-06 17:38:22.921] Executing hook class: MyApp.Hooks.Global
Removing intermediate container 39702b122ab6
 ---> dea6b2123165

Page 5 of 8



Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

[Warning] One or more build-args [CI_PROJECT_DIR] were not consumed
Successfully built dea6b2123165
Successfully tagged docker.domain.com/test/docker:master
Job succeeded

Note that I'm using GitLab Shell executor and not Docker executor. Docker executor is used when you need
something from inside of the image, for example, you're building an Android application in java container and you
only need an apk. In our case, we need a whole container and for that, we need Shell executor. So we're running
Docker commands via GitLab Shell executor.

 

Run

We have our image, next let's run it.  In the case of feature branches, we can just destroy old container and start
the new one. In the case of the environment, we can run a temporary container and replace environment container
in case tests succeed (that is left as an exercise to the reader).

Here is the script.

destroy old:
  stage: destroy
  tags:
    - test
  script:
    - docker stop iris-$CI_COMMIT_REF_NAME || true
    - docker rm -f iris-$CI_COMMIT_REF_NAME || true

This script destroys currently running container and always succeeds (by default docker fails if it tries to
stop/remove non-existing container).

Next, we start the new image and register it as an environment. Nginx container automatically proxies requests
using VIRTUAL_HOST environment variable and expose directive (to know which port to proxy).

run image:
  stage: run
  environment:
    name: $CI_COMMIT_REF_NAME
    url: http://$CI_COMMIT_REF_SLUG. docker.domain.com/index.html
  tags:
    - test
  script:
    - docker run -d
      --expose 52773
      --env VIRTUAL_HOST=$CI_COMMIT_REF_SLUG.docker.eduard.win
      --name iris-$CI_COMMIT_REF_NAME
      docker.domain.com/test/docker:$CI_COMMIT_REF_NAME
      --log $ISC_PACKAGE_INSTALLDIR/mgr/messages.log

 

Tests

Let's run some tests.

Page 6 of 8

https://docs.gitlab.com/runner/executors/
https://cloud.google.com/community/tutorials/nginx-reverse-proxy-docker


Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

test image:
  stage: test
  tags:
    - test
  script:
    - docker exec iris-$CI_COMMIT_REF_NAME irissession iris -U USER "##class(isc.git.
GitLab).test()"

Publish

Finally, let's publish our image in the registry

publish image:
  stage: publish
  tags:
    - test
  script:
    - docker login docker.domain.com -u dev -p 123
    - docker push docker.domain.com/test/docker:$CI_COMMIT_REF_NAME

User/pass could be passed using GitLab secret variables.

Now we can see the image in GitLab:

And other developers can pull it from the registry. On environments tab all our environments are available for easy
browsing:

Page 7 of 8

https://docs.gitlab.com/ee/ci/variables/#secret-variables


Continuous Delivery of your InterSystems solution using GitLab - Part VII: CD using containers
Published on InterSystems Developer Community (https://community.intersystems.com)

 

Conclusion
In this series of articles, I covered general approaches to the Continuous Delivery. It is an extremely broad topic
and this series of articles should be seen more as a collection of recipes rather than something definitive. If you
want to automate building, testing and delivery of your application Continuous Delivery in general and GitLab in
particular is the way to go. Continuous Delivery and containers allows you to customize your workflow as you need
it.

Links

Code for the article
Test project
Complete CD configuration

What's next
That's it. I hope I covered the basics of continuous delivery and containers.

There's a bunch of topics I did not talked about (so maybe later), especially towards the containers:

Data could be persisted outside of container, here's the documentation on that
Orchestration platforms like kubernetes
InterSystems Cloud Manager
Environment management - creating temporary environments for testing, removing old environments after
feature branch merging
Docker compose for multi-container deployments
Decreasing docker image size and build times
...

#Best Practices #Change Management #Containerization #Continuous Delivery #Continuous Integration #Git 
#Caché  
 

    Source
URL:https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vii-
cd-using-containers 

Page 8 of 8

https://github.com/intersystems-ru/GitLab/tree/master/docker
http://gitlab.eduard.win/test/docker
https://github.com/intersystems-ru/GitLab/blob/master/docker/.gitlab-ci.yml
http://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GICM_containers
https://kubernetes.io/
http://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GICM_using
https://docs.docker.com/compose/compose-file/
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/change-management
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/continuous-delivery
https://community.intersystems.com/tags/continuous-integration
https://community.intersystems.com/tags/git
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vii-cd-using-containers
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vii-cd-using-containers

