
Continuous Delivery of your InterSystems solution using GitLab - Part VI: Containers infrastructure
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Eduard Lebedyuk · Apr 6, 2018 5m read

Continuous Delivery of your InterSystems solution using GitLab - Part
VI: Containers infrastructure
In this series of articles, I'd like to present and discuss several possible approaches toward software development
with InterSystems technologies and GitLab. I will cover such topics as:

Git 101
Git flow (development process)
GitLab installation
GitLab Workflow
Continuous Delivery
GitLab installation and configuration
GitLab CI/CD
Why containers?
Containers infrastructure
GitLab CI/CD using containers

In the first article, we covered Git basics, why a high-level understanding of Git concepts is important for modern
software development, and how Git can be used to develop software.

In the second article, we covered GitLab Workflow - a complete software life cycle process and Continuous
Delivery.

In the third article, we covered GitLab installation and configuration and connecting your environments to GitLab

In the fourth article, we wrote a CD configuration.

In the fifth article, we talked about containers and how (and why) they can be used.

In this article let's discuss main components you'll need to run a continuous delivery pipeline with containers and
how they all work together.

Our configuration would look like this:

Page 1 of 6

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-i-git
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-ii-gitlab-workflow
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iii-gitlab-installation-and
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iv-cd-configuration
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-v-why-containers

Continuous Delivery of your InterSystems solution using GitLab - Part VI: Containers infrastructure
Published on InterSystems Developer Community (https://community.intersystems.com)

Here we can see the separation of the three main stages:

Build
Ship
Run

Build

In the previous parts, the build was often incremental - we calculated the difference between current environment
and current codebase and modified our environment to correspond to the codebase. With containers, each build is
a full build. The result of a build is an image that could be run anywhere with to dependencies.

Ship

After our image is built and passed the tests it is uploaded into the registry - specialized server to host docker
images. There it can replace the previous image with the same tag. For example, due to new commit to the master
branch we built the new image (project/version:master) and if tests passed we can replace the image in the registry
with the new one under the same tag, so everyone who pulls project/version:master would get a new version.

Run

Finally, our images are deployed. CI solution such as GitLab can control that or a specialized orchestrator, but the
point is the same - some images are executed, periodically checked for health and updated if a new image version
becomes available.

Check out docker webinar explaining these different stages.

Alternatively, from the commit point of view:

Page 2 of 6

https://blog.docker.com/2018/02/ci-cd-with-docker-ee/

Continuous Delivery of your InterSystems solution using GitLab - Part VI: Containers infrastructure
Published on InterSystems Developer Community (https://community.intersystems.com)

In our delivery configuration we would:

Push code into GitLab repository
Build docker image
Test it
Publish image to our docker registry
Swap old container with the new version from the registry

To do that we'll need:

Docker
Docker registry
Registered domain (optional but preferable)
GUI tools (optional)

Docker
First of all, we need to run docker somewhere. I'd recommend starting with one server with more mainstream Linux
flavor like Ubuntu, RHEL or Suse. Don't use cloud-oriented distributions like CoreOS, RancherOS etc. - they are
not really aimed at the beginners. Don't forget to switch storage driver to devicemapper.

If we're talking about big deployments then using container orchestration tools like Kubernetes, Rancher or Swarm
can automate most tasks but we're not going to discuss them (at least in this part).

Docker registry
That's a first container we need to run, and it is a stateless, scalable server-side application that stores and lets you
distribute Docker images.
You should use the Registry if you want to:

 tightly control where your images are being stored
 fully own your images distribution pipeline
 integrate image storage and distribution tightly into your in-house development workflow

Here's registry documentation.

Connecting registry and GitLab

Page 3 of 6

http://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GICM_containers_install
https://docs.docker.com/registry/

Continuous Delivery of your InterSystems solution using GitLab - Part VI: Containers infrastructure
Published on InterSystems Developer Community (https://community.intersystems.com)

Note: GitLab includes in-built registry. You can run it instead of external registry. Read GitLab docs linked in
this paragraph.

To connect your registry to GitLab, you'll need to run your registry with HTTPS support - I use Let's Encrypt to get
certificates, and I followed this Gist to get certificates and passed them into a container. After making sure that the
registry is available over HTTPS (you can check from browser) follow these instructions on connecting registry to
GitLab. These instructions differ based on what you need and your GitLab installation, in my case configuration
was adding registry certificate and key (properly named and with correct permissions) to /etc/gitlab/ssl and these
lines to /etc/gitlab/gitlab.rb:

registry_external_url 'https://docker.domain.com'
gitlab_rails['registry_api_url'] = "https://docker.domain.com"

And after reconfiguring GitLab I could see a new Registry tab where we're provided with the information on how to
properly tag newly built images, so they would appear here.

Domain
In our Continuous Delivery configuration, we would automatically build an image per branch and if the image
passes tests then we'd publish it in the registry and run it automatically, so our application would be automatically
available in all "states", for example, we can access:

Several feature branches at <featureName>.docker.domain.com
Test version at master.docker.domain.com
Preprod version at preprod.docker.domain.com
Prod version at prod.docker.domain.com

To do that we need a domain name and add a wildcard DNS record that points *.docker.domain.com to the IP
address of docker.domain.com. Other option would be to use different ports.

Nginx proxy

As we have several feature branches we need to redirect subdomains automatically to the correct container. To do
that we can use Nginx as a reverse proxy. Here's a guide.

Page 4 of 6

https://docs.docker.com/registry/configuration/
https://gist.github.com/PieterScheffers/63e4c2fd5553af8a35101b5e868a811e
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/restart_gitlab.html
https://en.wikipedia.org/wiki/Wildcard_DNS_record
https://cloud.google.com/community/tutorials/nginx-reverse-proxy-docker

Continuous Delivery of your InterSystems solution using GitLab - Part VI: Containers infrastructure
Published on InterSystems Developer Community (https://community.intersystems.com)

GUI tools
To start working with containers you can use either command line or one of the GUI interfaces. There are many
available, for example:

Rancher
MicroBadger
Portainer
Simple Docker UI
...

They allow you to create containers and manage them from the GUI instead of CLI. Here's how Rancher looks
like:

GitLab runner
Same as before to execute scripts on other servers we'll need to install GitLab runner. I discussed that in the third
article.

Note that you'll need to use Shell executor and not Docker executor. Docker executor is used when you need
something from inside of the image, for example you're building an Android application in java container and you
only need an apk. In our case we need a whole container and for that we need Shell executor.

Conclusion
It's easy to start running containers and there are many tools to choose from.

Continuous Delivery using containers differs from the usual Continuous Delivery configuration in several ways:

Page 5 of 6

https://www.google.com/search?q=gui+container+managers
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iii-gitlab-installation-and
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-iii-gitlab-installation-and

Continuous Delivery of your InterSystems solution using GitLab - Part VI: Containers infrastructure
Published on InterSystems Developer Community (https://community.intersystems.com)

Dependencies are satisfied at build time and after image is built you don't need to think about
dependencies.
Reproducibility - you can easily reproduce any existing environment by running the same container locally.
Speed - as containers do not have anything except what you explicitly added, they can be built faster more
importantly they are built once and used whenever required.
Efficiency - same as above containers produce less overhead than, for example, VMs.
Scalability - with orchestration tools you can automatically scale your application to the workload and
consume only resources you need right now.

What's next
In the next article, we'll talk create a CD configuration that leverages InterSystems IRIS Docker container.

#Change Management #Containerization #Continuous Delivery #Continuous Integration #Docker #Caché

 Source
URL:https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vi-
containers-infrastructure

Page 6 of 6

https://community.intersystems.com/tags/change-management
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/continuous-delivery
https://community.intersystems.com/tags/continuous-integration
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vi-containers-infrastructure
https://community.intersystems.com/post/continuous-delivery-your-intersystems-solution-using-gitlab-part-vi-containers-infrastructure

