
DeepSee: Databases, Namespaces, and Mappings - Part 2 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Alessandro Marin · Apr 3, 2018 2m read

DeepSee: Databases, Namespaces, and Mappings - Part 2 of 5
The following post is a guide to implement a basic architecture for DeepSee. This implementation includes a
database for the DeepSee cache and a database for the DeepSee implementation and settings.

Example 1: Basic architecture
Databases

This configuration for the Analytics server includes the APP-CACHE and APP-DEEPSEE databases. A crucial
setting for DeepSee to run smoothly is that the DeeSee cache should never be journaled. Doing so will slow down
the performance of the DeepSee engine, in addition to causing hyper-journaling and possibly problems with disk
space. For this reason the DeepSee cache is stored in APP-CACHE, a separate DeepSee Cache database with
journaling disabled.

APP-DEEPSEE is a DeepSee Implementation and Settings database containing the ^DeepSee.* globals. These
globals define most of the DeepSee implementation such as cube definitions and settings, Cube Manager, user
settings, and more. Note in the screenshot below that all databases are Read-Write and that it was decided to

Page 1 of 3

https://community.intersystems.com/user/alessandro-marin-1

DeepSee: Databases, Namespaces, and Mappings - Part 2 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

enable Journaling only on the APP-DEEPSEE. It is recommended to journal this database since it contains all
definitions, settings and user data.

Global Mappings

The following screenshot shows the mappings for this basic architectural implementation on the APP namespace.
The ^DeepSee.Cache.* and ^DeepSee.JoinIndex map the DeepSee cache to the APP-CACHE database. The
^DeepSee.* globals maps, among others, DeepSee implementation and settings to the APP-DEEPSEE database.

Comments

In this example for a basic architecture the DeepSee cache is stored in a dedicated database. This allows
journaling to be disabled on the ^DeepSee.Cache* and ^DeepSee.JoinIndex globals.

Journaling of the APP-DEEPSEE database makes it possible to restore the DeepSee implementation (cubes,
subject areas, DeepSee items, user settings, etc) in case of a disruptive event.

The configuration outlined in this example has some flaws. First, globals supporting synchronization are not taken
care of. Second, the APP-DEEPSEE database also contains fact tables, indices, and other DeepSee globals. As a
result, APP-DEEPSEE could become big in size making it not practical to journal and restore. This configuration
can be considered acceptable if, for example, cubes do not contain a large amount of data.

In the next example of this series we will see how to map cube synchronization globals, fact tables and indices to
separate databases.

#Analytics #Beginner #Databases #Deployment #Mapping #Tutorial #InterSystems IRIS BI (DeepSee)

Page 2 of 3

https://community.intersystems.com/post/deepsee-databases-namespaces-and-mappings-part-3-5
https://community.intersystems.com/tags/analytics
https://community.intersystems.com/tags/beginner
https://community.intersystems.com/tags/databases
https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/mapping
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/intersystems-iris-bi-deepsee

DeepSee: Databases, Namespaces, and Mappings - Part 2 of 5
Published on InterSystems Developer Community (https://community.intersystems.com)

 Source URL:https://community.intersystems.com/post/deepsee-databases-namespaces-and-mappings-part-2-5

Page 3 of 3

https://community.intersystems.com/post/deepsee-databases-namespaces-and-mappings-part-2-5

