
Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Rubens Silva · Sep 27, 2017 4m read

Frontier: An abstraction layer for rapid REST development - Part 3 -
Using the SQL API
Hello again and welcome to the Part 3 - Using the SQL API!

If you have been wondering about how to use SQL along with Frontier, you came to the right place. That's
because since Frontier wraps the common Caché SQL API within it's own, you need to use the API provided from
it. But you don't need to worry about its learning curve, because the Frontier SQL API is really simple.

If you arrived here without checking the Part 1, I'd recommend you doing so, because Part 1 covers the essential
for getting started with Frontier routers.

1. Core concepts
Getting started
Creating a simple request
Query parameters
Aliasing query parameters
Changing output format
Rest query parameters
Inferring object instances
Using literal notation
Seamlessly mixing instances with literals
Returning streams

2. Handling payloads
How it works
Making it useful
Unmarshalling payloads into instances
Using the unmarshaller to EDIT an existing object

3. Using the SQL API
Creating a simple dynamic query

Overwriting the default container property
Using cached queries
Passing parameters to queries4. Sharing data across router methods

5. Forcing API errors
6. Managing errors with Reporters

This part covers the topic 6.

6. Using the SQL API

Page 1 of 8

https://community.intersystems.com/user/rubens-silva-0
https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-1-core-concepts
https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-1-core-concepts
https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-2-handling-payloads
https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-4-sharing-data-across-router-methods

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

The SQL API is similar to what %SQL.Statement provides, with a single restriction: you can NOT use it to execute
a query manually.

It's designed this way to make sure that each row is processed by Frontier's SQL serializer and also to prevent the
developer from using different SQL APIs (%ResultSet) or restricting them to use queries only.

So keep in mind, that whenever you want to return a collection of data using SQL you MUST use the Frontier's
SQL API.

However, if you only need to do some internal operation using SQL, you can use %ResultSet, %SQL.Statement
or embedded SQL without issues.

Creating a simple dynamic query

In order to demonstrate what is possible to do with it, let's create a simple method that returns a TOP 3 list of
Persons using a dynamic query.

Add the route:

<Route Url="/sql/persons/top3" Method="GET" Call="GetPersons"></Route>

And the method for the Call.

ClassMethod GetPersons() As Frontier.SQL.Provider
{
 return %frontier.SQL.Prepare("SELECT TOP 3 * FROM SAMPLE.PERSON")
}

As we execute it, we can notice the result:

Page 2 of 8

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

Very easy, right?

Page 3 of 8

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

Overwriting the default container property

Notice that SQL results inserted are binded to that "results" property, by default this property serves as a container
for SQL providers. If you want to override this behavior, simply put the result inside a %DynamicObject instance.

To see this feature in action, update the method to look like this:

ClassMethod GetPersons() As Frontier.SQL.Provider
{
 return {
 "persons": (%frontier.SQL.Prepare("SELECT TOP 3 * FROM SAMPLE.PERSON"))
 }
}

This way you can use a custom JSON structure.

Using cached queries

If you want to use a cached query, Frontier provides a way similar to the format used with %ResultSet. That is:

classname:query

Add a new route like this:

Page 4 of 8

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

<Route Url="/sql/persons/namedquery" Method="GET" Call="GetPersonsUsingNamedQuery"></Route>

Then copy the method we created earlier and modify to use the syntax above.

ClassMethod GetPersonsUsingNamedQuery() As Frontier.SQL.Provider
{
 return {
 "persons": (%frontier.SQL.Prepare($classname()_ ":Top3Persons"))
 }
}

Now create the query, remember to flag it with SqlProc or it won't be available to use with the SQL engine.

Query Top3Persons() As %SQLQuery [SqlProc]
{
 SELECT TOP 3 * FROM SAMPLE.PERSON
}

Passing parameters to queries

Until this point, queries are not that much useful because they don't accept parameters. So to demonstrate how we
can pass query parameters we will simulate a pagination mechanism using %VID.

In order to do that, create a new route:

<Route Url="/sql/persons/paginated" Method="GET" Call="GetPaginatedPersons"></Route>

And a method that receives arguments. We're going to use query parameters to delimit how much entries we want
to fetch.

ClassMethod GetPaginatedPersons(
page As %Integer = 1,
rows As %Integer = 5) As Frontier.SQL.Provider
{
 set offset = (page * rows) - (rows - 1)
 set limit = page * rows

 return %frontier.SQL.Prepare("Frontier.Demo:PaginatedPersons").Parameters(offset, limit).Mode(2)
}

Notice that Parameters method, it's signature is similar to what %Execute does, but without actually executing it.

Mode is what we would call SelectMode or DisplayMode. You'll notice that the DOB field is formated.

And finally, we define a query to support it:

Page 5 of 8

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

Query PaginatedPersons(
offset As %Integer = 1,
limit As %Integer = 5) As %SQLQuery [SqlProc]
{
 SELECT %VID as RowIndex, * from (SELECT * FROM SAMPLE.PERSON) WHERE %VID
BETWEEN :offset AND :limit
}

And we have a paginated query:

Page 6 of 8

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

Naturally, you can do the same using a dynamic query, just like before, but use ? instead of :.

This concludes the part 3, if you have any doubts please don't be afraid to post them below.

Next part we are going to learn how to share data between methods. Stay in touch!

#ObjectScript #REST API #Tutorial #Caché

Page 7 of 8

https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/cach%C3%A9

Frontier: An abstraction layer for rapid REST development - Part 3 - Using the SQL API
Published on InterSystems Developer Community (https://community.intersystems.com)

 Source
URL:https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-3-using-sql-api

Page 8 of 8

https://community.intersystems.com/post/frontier-abstraction-layer-rapid-rest-development-part-3-using-sql-api

