
Polling an External REST API with Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Nathan Ng · Sep 6, 2017 4m read

Polling an External REST API with Ensemble

Preface
Before we begin, I'd like to mention that I am by no means an Ensemble expert, so take this with a grain of salt and
please feel free to offer any suggestions for improvement. That being said, I have enjoyed working with Ensemble
and wanted to share the approach I took to poll an external REST API for patient data in the hopes that it might
help others with a similar goal.

If you get bored easily and just want to see some code, feel free to jump straight to the example on github. It uses
dummy data (for obvious reasons) but the core principles should be the same.

The Goal
The goal of the project was to read a global containing a list of critical results and query an external REST API to
determine whether they had been viewed. If they were, we could perform some logic on our side and remove them
from our pending list, otherwise we would check again on our next poll interval.

Design Decisions
I wanted to gain as much reuse out of my operations as possible and stick to the Ensemble way of doing things as
best I could, so I decided on the following:

1. A service would loop through our Global and pass an Ens.Request message to a BPL
2. The BPL would be in charge of handling all the business logic (and storing application state as context

variables)
3. All REST calls would be made via an operation, with the Server, URL, Action (e.g. GET, POST, etc), and

Content Type being exposed as configuration settings.
4. The REST Operation would take a custom Ens.Request message with fields for Form Variables and/or

a JSON Payload.
5. The REST Operation would return a custom Ens.Response message with a field for the Server's JSON

response string.

In order to accomplish items 3- 5 I ended up extending the stock EnsLib.REST.Operation class.

The Operation
The full code for this operation can be found on github, but the gist of it is as follows:

OnMessage() Accepts a REST.Request and returns a REST.Response to the BPL

 Method OnMessage(pRequest As DLS.REST.Request, pResponse As
DLS.REST.Response) As %Status
 {

// This hook lets the developer override how form variables are set if necessary

Page 1 of 3

https://community.intersystems.com/user/nathan-ng
https://github.com/DLSNNG/EnsembleRestOperations
https://github.com/DLSNNG/EnsembleRestOperations

Polling an External REST API with Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

 Set formVariables = ..PopulateFormVariables(pRequest)

// This hook lets the developer override how the JSON payload is set if necessary
 Set payload = ..PopulatePayload(pRequest)

// Check the action set in the settings configuration and make appropriate request
 If ..Action = "POST" {
 Set status = ..Adapter.Post(.tHttpResponse, formVariables, payload)
 }
 ELSEIF ..Action = "GET" {
 Set status = ..Adapter.Get(.tHttpResponse, formVariables, payload)
 }
 // Etc for POST and PUT

 // Save response string to variable
 Set responseString = tHttpResponse.Data.Read(100000)

// This hook allows the developer to override how the server's response is handled if
 necessary
 Set pResponse = ..HandleResponse(responseString)
 }

The BPL
As stated earlier, the BPL is in charge of the business logic, so it will need to both construct the REST.Request
message and handle the REST.Response message.

BPL Context:

Before we do anything else, we'll want to define the following context variables:

1. context.PayloadA - this will store the JSON payload that will be passed to our REST Operation
2. context.ServerResponseA - this will store the JSON response from our REST Operation

Constructing the request:

Use a CODE block to store a JSON string to the BPL context

Set payloadObj = {
 "myProperty": "myValue,
 "mySecondProperty": "mySecondValue"
}

Set context.PayloadA = payloadObj.$toJSON() // Note: use %ToJSON for 2016.2 and above

Use a CALL block to call the operation. Make sure to set the Request Message Class to REST.Request
and set the callrequest.Payload equal to your context.PayloadA (the value set in the above CODE block).

Handling the response:

In the above CALL block, make sure the Response Message Class is set to REST.Response and set the

Page 2 of 3

Polling an External REST API with Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

context.ServerResponseA equal to your callresponse.ServerResponse.
Use a CODE block to handle the server response that is now stored to your BPL context

?Set responseObj = ##class(%Object).$fromJSON(context.ServerResponseA)

// Do something with this object

Note: If you are performing multiple operations that depend on each other, make sure your CALLs are synchronous
and in the correct order.

Discussion
So that's the approach I took to polling an external REST API. Hopefully you found it useful, but please feel free to
let me know if you have any questions or suggestions on how it could be improved.

If you'd like to play around with an example, you can find an extract of the classes/settings here.

Thanks for reading! - Nathan

#Business Operation #Business Process (BPL) #REST API #Ensemble

 Source URL:https://community.intersystems.com/post/polling-external-rest-api-ensemble

Page 3 of 3

https://github.com/DLSNNG/EnsembleRestOperations
https://community.intersystems.com/tags/business-operation
https://community.intersystems.com/tags/business-process-bpl
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/post/polling-external-rest-api-ensemble

