SQL index for array property elements
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Vitaliy Serdtsev - un 29,2017 g read

SQL index for array property elements

Sometimes, it comes in very handy (especially for the EAV model) to use array properties in a class and be able to
gickly search by their elements: both the key and the value.

Let's take a look at a simple example:

Cl ass User.eav Extends 9%Persi stent

{

Index idx1l On attributes(ELEMENTS) [Data = entity];
Index idx2 On (attributes(KEYS), attributes(ELEVMENTS)) [Data = entity];
Property entity;

Property attributes As array O ¥%stri ng(SQLTABLENAME = "attributes") |
Sql Fi el dNanme = attr];

/11 d ##cl ass(User. eav). Repopul ateAl |l ()
Cl assMet hod Repopul at eAl | ()

{
d ..%bel eteExtent ()

s name=$TR(" Si be”ri an pi *ne ce~dar", """, $c(769))

obj =. . ¥New()

obj . entity="Human"

obj . attributes. Set At (22, " Age")
obj.attributes. Set At (186, "Hei ght")
obj . attributes. Set At ("Jack", " Nanme")
obj . 4Bave()

[oRNeRN e RN o RN,)

s obj =.. %\New)

s obj.entity="Tree"

d obj.attributes. Set At (186, "Age")

d obj.attributes. Set At (22, "Hei ght")

d obj.attributes. Set At ("Pines","Fam|y")
d obj.attributes. Set At (nane, "Nane")

d obj . %Bave()

/*

; or

&sql (insert into eav(entity) select 'Human' union select 'Tree')
&sql (insert into attributes(eav, el enent_key, attr)

select 1,'Age', 22 union

select 1,'Height', 186 union

select 1,'Nane','Jack' union

Page 1 of 4

https://community.intersystems.com/user/vitaliy-serdtsev-0

SQL index for array property elements
Published on InterSystems Developer Community (https://community.intersystems.com)

select 2,'Age', 186 union

select 2,'Height',22 union
select 2,'Fanmily','Pines' union
sel ect 2,' Nane', :nane)

*/

d .. Reindex()
}

/11 d ##class(User. eav). Rei ndex()
O assMet hod Rei ndex()

{

d ..9%Buil dl ndi ces(, 1)

d $system SQL. TuneTabl e(" SQLUser . eav", 1)

d $system SQL. TuneTabl e("SQ.User. attri butes", 1)

d $system OBJ. Conpi | e($cl assnane(), "cu/ nul ti conpi |l e=1")
}
}

After population

USER>d ##cl ass(User. eav). Repopul ateAl | ()

, the following data will appear in our tables:

ID entity
1 Human
2 Tree

eav ID attr elementkey

1 1]|Age 22 Age
1 1]|[Name Jack Name
1 1]|Height 186 Height
2 2||Age 186 Age
2 2||Height 22 Height
2 2||Name Siberian pine cedar Name
2 2||Family Pines Family

A global with data:

USER>zw "User . eavD

AUser . eavD=2

~User. eavD(1) =$l b("", " Human")

AUser.eavD(1, "attributes", "Age")=22
AUser.eavD(1, "attributes", "Height")=186
AUser.eavD(1, "attributes", " Nane")="Jack"
AUser.eavD(2)=$l b("","Tree")

AUser.eavD(2, "attributes","Age")=186
AUser.eavDX 2, "attributes","Fam |y")="Pi nes"
AUser.eavD(2, "attributes", "Height")=22
AUser.eavX 2, "attributes","Nane")="Si be?ri an pi ?ne ce?dar"

A global with indexes:

Page 2 of 4

SQL index for array property elements
Published on InterSystems Developer Community (https://community.intersystems.com)

USER>zw ~User . eavl

AUser.eavl ("idx1"," 186",1)=$lb("", "Human")

AUser.eavl ("idx1"," 186", 2)=$Ib("","Tree")

AUser . eavl ("idx1"," 22",1)=$lb("", "Human")

AUser.eavl ("idx1"," 22",2)=$l b("","Tree")

AUser. eavl ("idx1"," JACK', 1)=$l b("", "Human")

AUser . eavl ("idx1"," PINES', 2)=$lb("","Tree")

AUser. eavl ("idx1"," SIBE?RI AN Pl ?NE CE?DAR', 2)=$l b("", " Tree")
AUser . eavl ("idx2", "Age"," 186",2)=$lb(""," Tree")

AUser. eavl ("idx2","Age"," 22",1)=$lb("", "Human")

AUser. eavl ("idx2","Fam ly"," PINES", 2)=8$lb("","Tree")

AUser. eavl ("idx2","Height"," 186",1)=$lb("","Human")

AUser . eavl ("idx2","Height"," 22",2)=$lb("","Tree")

AUser . eavl ("idx2","Nanme"," JACK",1)=$I b("","Human")

AUser. eavl ("idx2","Nane"," SIBE?RI AN Pl ?NE CE?DAR', 2)=$I b("","Tree")

Let’s run the following query now:

entity

Human
Tree

The query runs, but uses full scanning and not our indexes. If we look at our tables in the SMP (System
Management Portal), we won't find idx1 and idx2 there, although we know for sure that the data was generated.

This happens because the SQL engine “sees” only those indexes for array properties that are based exclusively on
the fields of the subtable array and contain a key, i.e. propArray(KEY). Both of our indexes contain the “entity” field,
which is missing in the “attributes” subtable.

You will also not see the Index idx3 On attributes(ELEMENTS);, since it doesn't contain attributes(KEYS), but the
following indexes:

* Index idx4 On (attributes(KEYS), attributes(ELEMENTS));
* Index idx5 On (attributes(ELEMENTS), attributes(KEYS));

will be visible and will be taken into account in queries. However, they are not optimal for all types of queries.

So what is the most effortless method of unhiding indexes for the elements of an array property from the SQL
engine?

Caché 2015.1 allows you to project a collection as a table field, if this collection projects into a subtable using the
SetCollectionProjection/GetCollectionProjection methods.

This functionality is disabled by default.

Earlier versions of Caché do not have these methods, but you can try to enable this feature manually:

YBYS>s MUBYS("sql ", "sys","collection projection")=1
After you make this change, make sure to recompile the classes.

So, let's turn this parameter on and see what it does.

Page 3 of 4

http://docs.intersystems.com/cache20151/csp/docbook/DocBook.UI.Page.cls?KEY=GSQL_queries#GSQL_queries_collection

SQL index for array property elements
Published on InterSystems Developer Community (https://community.intersystems.com)

We can now see our indexes in the SMP, and there is a hidden collection-field called “attr” in the “eav” table.
However, our query still doesn't see the idx1/idx2 indexes.

To fix the situation, let's use the already familiar predicate FOR SOME %ELEMENT:

entity

Human
Tree

The idx1 index is now used in the query. Let's change it a bit:

entity

Human

entity

Tree

The last two examples use the idx2 index instead of idx1.

UPD: now the same can be done using SQLPROJECTION, namely:

Property attributes As array O %5tring(SQPRQIECTION = "t abl e/ col um",
SQLTABLENAME = "attributes") [Sqgl Fi el dNane = attr];

This is a translation of the following article. Thanks [@Evgeny Shvarov] for the help in translation.

This post is also available on Habrahabr™.
Inspired by 17383689,

Special thanks to [@Alexander Koblov] for the tip in the framework of WRC.

#Indexing #ObjectScript #SQL #Caché

Source URL:https://community.intersystems.com/post/sqgl-index-array-property-elements

Page 4 of 4

http://docs.intersystems.com/cache20151/csp/docbook/DocBook.UI.Page.cls?KEY=RSQL_forsomeelement
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GOBJ_propcoll#GOBJ_propcoll_sqlprojection
http://www.sql.ru/blogs/servit/1906
https://community.intersystems.com/user/evgeny-shvarov
http://habrahabr.ru/post/255203/
http://www.sql.ru/forum/actualutils.aspx?action=gotomsg&msg=17383689
https://community.intersystems.com/user/alexander-koblov
http://www.intersystems.com/services-support/worldwide-response-center/
https://community.intersystems.com/tags/indexing
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/sql
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/sql-index-array-property-elements

