
Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Vitaliy Serdtsev · May 20, 2017 10m read

Localization in Caché DBMS
This is a translation of the following article. Thanks @Evgeny Shvarov for the help in translation.

Let's assume that you wrote a program that shows "Hello World!", for example:

 write "Hello, World!"

The program works and everyone is happy.

With time, however, your program becomes more complex, gets more features and you eventually need to show
the same string in different languages. Moreover you don't know the number and names of these languages.

The spoiler below contains a description of how the task of multi-language localization is solved in Caché.

Brief overview

The Caché DBMS comes with a ready mechanism that facilitates the localization of string resources in console
programs, web application interfaces, JavaScript files, error messages and such.

Note: We took a cursory look at this topic in one of our previous articles.

For example, we have a project with multiple classes, programs, web pages, JS scripts and so forth.

The localization mechanism works in the following way:

1. during compilation, all the strings to be localized are extracted an saved to the database in a particular
format.

2. in the compiled code, these strings are replaced with special placeholders that are filled with corresponding
string values (depending on the language selected) at runtime.

The localization process is fully transparent for the developer.

The developer does not need to manually populate a string container (database table or a resource file) or write
any code to manage this whole infrastructure, including the following: change of language at runtime, data
export/import into various formats for translators, etc.

Here's what we end up with:

1. readable and uncluttered source code;
2. automatically populated storage of strings being translated;

Page 1 of 9

https://community.intersystems.com/user/vitaliy-serdtsev-0
http://www.sql.ru/blogs/servit/1279
https://community.intersystems.com/user/evgeny-shvarov
http://www.sql.ru/blogs/servit/1214

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

Note: When strings are removed from the code, they are not removed from the storage. To clear the
storage from such phantoms, it's easier to empty it completely and recompile the entire project.

3. possibility to change the current language "on the go". This applies both to web applications and regular
programs;

4. possibility to get a string in a specific language from a particular domain (we'll cover domains a bit later in
this article);

5. ready methods for exporting/importing the storage to XML.

All right, let's now have a closer look at how it works and analyze a few examples.

Introduction

Let's create a MAC program with the following content:

#Include %occMessages
test() {

 write "$$$DefaultLanguage=",$$$DefaultLanguage,!
 write "$$$SessionLanguage=",$$$SessionLanguage,!

 set msg1=$$$Text("??????, ???!","asd")
 set msg2=$$$Text("@my@??????, ???!","asd")
 write msg1,!,msg2,!

}

Result:

USER>d ^test
$$$DefaultLanguage=ru
$$$SessionLanguage=ru
??????, ???!
??????, ???!

So what do we get as the result?

First of all, we have a new global in the DB

^CacheMsg("asd") = "ru"
^CacheMsg("asd","ru",2915927081) = "??????, ???!"
^CacheMsg("asd","ru","my") = "??????, ???!"

Then, if you place the cursor over the $$$Text macro, you will see the code it unfolds into.

For example, the intermediate (unfolded) program code (INT-code) will look like this:

test() {
 write "$$$DefaultLanguage=",$get(^%SYS("LANGUAGE","CURRENT"),"en"),!
 write "$$$SessionLanguage=",$get(^||%Language,"en"),!
 set msg1=$get(^CacheMsg("asd",$get(^||%Language,"en"),"2915927081"),"??????, ???!")

Page 2 of 9

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_localization#GZAP_dollar_text_macros

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

 set msg2=$get(^CacheMsg("asd",$get(^||%Language,"en"),"my"),"??????, ???!")
 write msg1,!,msg2,!
}

As for the example above, please note the following:

1. strings in the program should be originally written in the language that is specified by default in the current
locale of the Caché DBMS.

Note: If you are using string identifiers instead of their hash, this is not that important.

2. for each string, the macros calculates its CRC32, and all data - CRC32 or string identifier, domain, current
system language - is saved to the ^CacheMsg global;

3. instead of the string, the system inserts some code that takes account of the value in the private
^||%Language global;

4. if the user requests a string in a language for which no translation exists (no data in the storage), the
original string will be returned;

5. the domains mechanism allows you to logically split strings being localized - for example, different
translations of the same strings and such.

If for some reason you don't like the current algorithm of the $$$Text macro - for instance, you want to set the
default language in a different way or store data in a different place - you can create your own version of it.

To do this, use the ##Expression and/or ##Function macro.

Let's continue with our example.

Let's add a new language. To do this, export the string storage to a file and give it to translators, then import the
translation back in, this time with a different language.

Data can be exported in many ways and in different formats.

We will use the standard methods of the %MessageDictionary class: Import(), ImportDir(), Export(),
ExportDomainList():

 do ##class(%MessageDictionary).Export("messages.xml","ru")

We'll get a new file called "messages_ru.xml " in our DB folder. Let's rename it to "messages_en.xml ", change its
language to "en" and translate its content.

Once done, import it back to our storage:

 do ##class(%MessageDictionary).Import("messages_en.xml")

The global will look like this:

^CacheMsg("asd") = "ru"
^CacheMsg("asd","en",2915927081) = "Hello, World!"
^CacheMsg("asd","en","my") = "Hello, World!"
^CacheMsg("asd","ru",2915927081) = "??????, ???!"
^CacheMsg("asd","ru","my") = "??????, ???!"

We can now change the language "on the go", like this:

Page 3 of 9

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_macros#GCOS_macros_mpp_lblbExpression
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_macros#GCOS_macros_mpp_lblbFunction
http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25Library.MessageDictionary

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

#Include %occMessages

test()
{

 set $$$SessionLanguageNode="ru"

 set msg1=$$$Text("??????, ???!","asd")
 set msg2=$$$Text("@my@??????, ???!","asd")
 write msg1,!,msg2,!

 set $$$SessionLanguageNode="en"

 set msg1=$$$Text("??????, ???!","asd")
 set msg2=$$$Text("@my@??????, ???!","asd")
 write msg1,!,msg2,!

 set $$$SessionLanguageNode="pt-br"

 set msg1=$$$Text("??????, ???!","asd")
 set msg2=$$$Text("@my@??????, ???!","asd")
 write msg1,!,msg2,!

}

Result:

USER>d ^test
??????, ???!
??????, ???!
Hello, World!
Hello, World!
??????, ???!
??????, ???!

Take a look at the last variant.

Example of localizing a non-web application (a regular class)

Localization of class methods:

Include %occErrors

Class demo.test Extends %Persistent
{

Parameter DOMAIN = "asd";

ClassMethod Test()
{
 do ##class(%MessageDictionary).SetSessionLanguage("ru")

 write $$$Text("??????, ???!"),!

Page 4 of 9

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

 do ##class(%MessageDictionary).SetSessionLanguage("en")

 write $$$Text("??????, ???!"),!

 do ##class(%MessageDictionary).SetSessionLanguage("pt-br")

 write $$$Text("??????, ???!"),!

 #dim ex as %Exception.AbstractException

 try
 {

 $$$ThrowStatus($$$ERR($$$AccessDenied))

 }catch (ex)
 {
 write $system.Status.GetErrorText(ex.AsStatus(),"ru"),!
 write $system.Status.GetErrorText(ex.AsStatus(),"en"),!
 write $system.Status.GetErrorText(ex.AsStatus(),"pt-br"),!
 }
}

}

Note: Apparently, you can use the macros described above.

Result:

USER>d ##class(demo.test).Test()
??????, ???!
Hello, World!
??????, ???!
?????? #822: ???????? ? ???????
ERROR #822: Access Denied
ERRO #822: Acesso Negado

Pay attention to the following nuances:

exception messages have already been translated into several languages. Since these are system
messages, their data is stored in the system %qCacheMsg global;
we defined the name of the domain just once, since the $$$Text macro is intended for being used in
classes;
although the $$$Text macro was written for web applications, it still works for an offline environment, too.

Example of a web application localization

Let's take a look at th following example:

Page 5 of 9

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

/// Created using the page template: Default
Class demo.test Extends %ZEN.Component.page
{

/// Name of the application that this page belongs to.
Parameter APPLICATION;

/// displayed name for a new application.
Parameter PAGENAME;

/// Domain used for localization.
Parameter DOMAIN = "asd";

/// This Style contains a definition of the page's CSS style.
XData Style
{
<style type="text/css">
</style>
}

/// This XML block describes the content of this page.
XData Contents [XMLNamespace = "http://www.intersystems.com/zen"]
{
<page xmlns="http://www.intersystems.com/zen" title="">
 <checkbox onchange="zenPage.ChangeLanguage();"/>
 <button caption="Client" onclick="zenPage.clientTest(2,3);"/>
 <button caption="Server" onclick="zenAlert(zenPage.ServerTest(1,2));"/>
</page>
}

ClientMethod clientTest(
 a,
 b) [Language = javascript]
{
 zenAlert(
 $$$FormatText($$$Text("Result(1)^ %$# @*&' %1=%2"),'"',a+b),'\n',
 zenText('msg3',a+b),'\n',
 $$$Text("Hello from the browser!")
);
}

ClassMethod ServerTest(
 A,
 B) As %String [ZenMethod]
{
 &js<zenAlert(#(..QuoteJS($$$FormatText($$$Text(
"Result(2)^ %$# @*&' ""=%1"),A+B)))#);>
 quit $$$TextJS("Hello from Caché!")
}

Method ChangeLanguage() [ZenMethod]
{
 #dim %session as %CSP.Session
 set %session.Language=$select(%session.Language="en":"ru",1:"en")
 &js<zenPage.gotoPage(#(..QuoteJS(..Link($classname()_".cls")))#);>
}

Method %OnGetJSResources(ByRef pResources As %String) As %Status [Private]
{

Page 6 of 9

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

 Set pResources("msg3") = $$$Text("Result(3)^ %$# @*&' ""=%1")
 Quit $$$OK
}

}

There are some novelties worth mentioning:

1.
there are two options for localizing messages on the client side:

using the $$$Text method defined in the "zenutils.js" file;

using a combination of the zenText() method on the client side and the server-side method
%OnGetJSResources()

More information is available in the official documentation: Localization for Client Side Text

2.
Some attributes of ZEN components support localization initially: various headings, tips, etc.

If you need to create your own object-oriented components - based, for instance, on jQuery or extJS, or
built from scratch, - you can use a special data type called %ZEN.Datatype.caption: Localization for Zen
Components

3.
to change a language, you can use the Language property of the %session and/or %response objects: Zen
Special Variables

Initially, the session uses the language set in the browser:

Creation of a custom error message dictionary

The tools we reviewed above should suffice to do this.

However, there is an integrated method that helps automate this process a bit.

Let's proceed.

Let's create a "messages_ru.xml " file containing error messages with the following сontent:

<?xml version="1.0" encoding="UTF-8"?>
<MsgFile Language="ru">
 <MsgDomain Domain="asd">
 <Message Id="-1" Name="ErrorName1">????????? ? ????? ?????? 1</Message>
 <Message Id="-2" Name="ErrorName2">????????? ? ????? ?????? 2 %1 %2</Message>
 </MsgDomain>
</MsgFile>

Page 7 of 9

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_localization#GZAP_localization_zen_client
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_localization#GZAP_localization_components
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_localization#GZAP_localization_components
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_page_really_programming#GZAP_special_variables
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_page_really_programming#GZAP_special_variables

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's import it to the DB:

do ##class(%MessageDictionary).Import("messages_ru.xml")

Two globals were created in the database:

^CacheMsg

USER>zw ^CacheMsg
^CacheMsg("asd","ru",-2)="????????? ? ????? ?????? 2 %1 %2"
^CacheMsg("asd","ru",-1)="????????? ? ????? ?????? 1"

^CacheMsgNames

USER>zw ^CacheMsgNames
^CacheMsgNames("asd",-2)="ErrorName2"
^CacheMsgNames("asd",-1)="ErrorName1"

Generating an Include file called "CustomErrors":

USER>Do ##class(%MessageDictionary).GenerateInclude("CustomErrors",,"asd",1)

Generating CustomErrors.INC ...

Note: More details are available in the official documentation for the GenerateInclude()method.

File "CustomErrors.inc":

#define asdErrorName2 "<asd>-2"
#define asdErrorName1 "<asd>-1"

We can now use error codes and/or short error names, for example:

Include CustomErrors

Class demo.test [Abstract]
{

ClassMethod test(A As %Integer) As %Status
{
 if A=1 Quit $$$ERROR($$$asdErrorName1)
 if A=2 Quit $$$ERROR($$$asdErrorName2,"f","6")
 Quit $$$OK
}

}

Results:

USER>d $system.OBJ.DisplayError(##class(demo.test).test(1))

Page 8 of 9

http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25Library.MessageDictionary#GenerateInclude

Localization in Caché DBMS
Published on InterSystems Developer Community (https://community.intersystems.com)

?????? -1: ????????? ? ????? ?????? 1
USER>d $system.OBJ.DisplayError(##class(demo.test).test(2))

?????? -2: ????????? ? ????? ?????? 2 f 6

USER>w $system.Status.GetErrorText(##class(demo.test).test(1),"en")
ERROR -1: Message about some error 1

USER>w $system.Status.GetErrorText(##class(demo.test).test(2),"en")
ERROR -2: Message about some error 2 f 6

Note: Messages for the English language were created in an identical manner.

#Compiler #XML #ObjectScript #Localization #Caché

 Source URL:https://community.intersystems.com/post/localization-cach%C3%A9-dbms

Page 9 of 9

https://community.intersystems.com/tags/compiler
https://community.intersystems.com/tags/xml
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/localization
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/localization-cach%C3%A9-dbms

