Let's write an Angular 1.x app with a Caché REST backend - Part 12
Published on InterSystems Developer Community (https://community.intersystems.com)

Avrticle
Chris Stewart - mays, 2017 3, read

Let's write an Angular 1.x app with a Caché REST backend - Part 12

In our last lesson, we added some formatting and validation to our Edit Widget form. So, how we are ready to add
the ability to add new Widgets to our application. However, the great Widget Wars have come to an abrupt end, as
Widget Direct has purchased its biggest competitor, WorldWideWidgets. In order to maintain some continuity, we
need to display their catalog on our new application.

So, we have good news and bad news. The good news is at that WorldWideWidgets also use Caché, but the bad
news is that their Widget table has different properties with different names than our Widget class, and we need to
keep the catalogs seperate for the time being. WorldwWideWidgets don't have a WidgetAccessory catalog (and they
wonder why they lost the Widget War), so we don't need to worry about Accessories for now

] % DataPopulateWidgets.dls | i3] pageControllerjs | % User.WidgetAccessory.ds | “ UserWidgetAccessorylinkcls | ¢ REST.Widgetds | i3] WidgetControllerjs | i3 EditWidgetcsp ¢ User.WWWidget.cls b
/// Import of WWWidget database

Class User.WWWidget Extends %Persistent

{

M| x

Property WidgetName As %String;
Property Summary As %String;
Property StockLevel As %Integer;

Property Cost As %Currency;

Property Barcode As %String;
Property Location As %String;

BStorage Default
{
B<Data name="WWWidgetDefaultData">
B<Value name="1">
<Value>%%CLASSNAME</Value>
</Value>
B<Value name="2">
<Value>WidgetName</Value>
</Value>
B<Value name="3">
<Value>Summary</Value> ﬂ

<« [

Page 1 of 5

https://community.intersystems.com/user/chris-stewart
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-11

Let's write an Angular 1.x app with a Caché REST backend - Part 12
Published on InterSystems Developer Community (https://community.intersystems.com)

« Wizards » Actions » Open Table Documentation »

Catalog Details | Execute Query | Browse | SQL Statements in this Namespace

. Execute I Show Plan . Show History | Query Builder | Display Mode v Max 1000 more

Select * from WWWidget

4

Row count: 3 Performance: 0.003 seconds 27 global references 1357 lines executed 0 disk read latency (ms) Cached Query: %salcq. WIDGETDIRECT.cIsS Last

update: 2017-05-07 18:22:17.709

ID Barcode Cost | Location StockLevel Summary WidgetName
1 50011001104 40.9900 HQ 40 This widget provides 110V60 or 230V50 Widget of Power
2 50011001105 140.9900 HQ 87 This widget can travel at 143mph Widget of Speed
3 50011001106 50.9900 HQ 54 This widget can provide 10000 Candlepower Widget of Light

3 row(s) affected

So, this is a serious problem, it looks like we need to implement 2 sets of pages, components and services. Or do
we? Since the JSON representation is not tightly linked to the persistent class, we can actually export these
Widgets with the property names of the original Widget class, which will then allow us to display and update them

using our existing components and controllers.

So first, we implement the toJSON on the WWWidget class. We map the property names to the existing names,
implement the additional properties with their actual names, and to differentiate these Widgets from our original

catalog, we will prepend the ID value with a 'W'

and then we will alter our REST.Widget class to return all WWWidgets in addition to our Widgets. We will
implement a second cursor, and push the toJSON representations of these widgets onto our widget array.

4 “i¢ Data.PopulateWidgets.cls ,-__‘s_] pageControllerjs | “i User.WidgetAccessory.cls "¢ User.WidgetAccessoryLink.cls “i# REST.Widget.cls .5;] WidgetController.js j EditWidget.csp 7} User.WWWidget.cls * P X
Property Barcode As %String; Ej
Property Location As %String;

BMethod toJSON (traverseRelationships As %Boolean = 0) As %String
{
set js = {}
set js n. Id = "W"_..%Id()
set Name = ..WidgetName
set Description = ..Summary
set Price = ..Cost
set Quantity = ..StockLevel
set Barcode = ..Barcode
set n.Location = ..Location
quit jsonReturn
}
BStorage Default
{
B<Data name="WWWidgetDefaultData">
8<Value name="1">
<Value>%%CLASSNAME</Value>
</Value>
8<Value name="2">
<Value>WidgetName</Value>
</Value> 1J
J o

Page 2 of 5

Let's write an Angular 1.x app with a Caché REST backend - Part 12
Published on InterSystems Developer Community (https://community.intersystems.com)

For { &SQL(FETCH WidgetCurs)
Quit:SQLCODE
set widgetObj = ##class(User.Widget) .%0OpenId(Id)
do widgetAry.%Push (widgetObj.todSON(1))
}
&SQL (CLOSE WidgetCurs)

// let's get the WWWidgets
&SQL (DECLARE WWWidgetCurs CURSOR FOR
SELECT
s1d
INTO :Id
FROM SQLUser.WWWidget

&SQL (OPEN WWWidgetCurs)

For { &SQL(FETCH WWWidgetCurs)
Quit :SQLCODE
set widgetObj = ##class (User.WWWidget) .%0penld(Id)
do widgetAry.%Push (widgetObj.toJdSON(1))
}
&SQL (CLOSE WwWWidgetCurs)
SET retObj.Widgets = widgetAry

WRITE retObij.%ToJSON ()
QUIT S$$SOH

We can check our REST Service to check that the Widgets from both classes are being returned.

HTTP v /I localhost:57773/widgetsdirect/rest/widget/ ?[01 GET <

HEADERS fom~ BODY

© 1% a setan authorization w XHR does not allow payloads for GET request
or change a method definition in settings.

RESPONSE Cache Detected - Elapsed Time: 38ms
HEADERS pretty v BODY pretty ~
CACHE-CONTROL: no-cache v
Connection: Keep-Alive Widgets: ¥ [

CONTENT-ENCODIN...gzip . R . q q q g
CONTENT-LENGTH: 680 Bytes » {Id: "1", Name: "Waterproof Widget", Description: "This widget is waterproof to 100m depth for a time of up to 7
Content-Type: application/json » {Id: "2", Name: "Woodland Widget", Description: "This widget identifies plant and tree species",..},

Date: 2017 May 7 18:25:50 » {Id: "3", Name: "Racing Widget", Description: "This widget records average speed and lap time",..},

EXPIRES: 1998 Oct 29 17:04:19 -18 years » {Id: "4", Name: "Music Widget", Description: "This widget can autotune all brass and string instruments",..},
Keep-Alive: timeout=120 » {Id: "5", Name: "Special Widget", Description: "This widget is shockproof and aerodynamic",..},

PRAGMA: no-cache » {Id: "6", Name: "Wacky Widget", Description: "This widget is shockproof", Price: 13.99,..},

Server: Apache » {Id: "W1", Name: “Widget of Power", Description: "This widget provides 116V6@ or 23eV5e",..},

A COMDIETE DENIIEQT HEANERQ » {Id: "W2". Name: "Widzet of Speed". Descripbtion: "This widget can travel at 143mph"...}.

Now that we have our GET working, we can work on allowing Update of our new class. This is a reverse of the
toJSON, where we will iterate over all properties we received, and manually map them to the actual properties of
the class of WWWidgets.

Page 3 of 5

Let's write an Angular 1.x app with a Caché REST backend - Part 12
Published on InterSystems Developer Community (https://community.intersystems.com)

BMethod fromJSON (json As %String) As %String

{
set jsonObj = {}.%FromJSON (json)
set propsIterator = jsonObj.%GetIterator()
While (propslterator.%GetNext (.key,.value)) {
if (kex ="Name"){
set ..WidgetName=value
} elseif (5@ "Descrlptlon) {
set ..Summary=value
} elseif (key="Price") {
set ..Cost=value
} elseif (key="Quantity"){
set ..StockLevel=value
} elseif ((key="Barcode") | | (key="Location")) {
Set SPROPERTY (Sthis, key) = wvalue
}
}
quit ..%Save()
}

We now need to make sure our PUT service is able to choose between our 2 Widget classes. Luckily, we
prepended the ID of the WWWidget class with a W, so we have an easy way to differentiate between each class. If
the first character of the ID is a 'W' then we %Openld with the rest of the ID value.

BClassMethod UpdateWidgetById (widgetid As %Integer) As %Status
{

Set %response.ContentType="application/json"

SET retObij = {}
Kill %objlasterror
if (Se(widgetid)="W") {
set widgetObj = ##class (User.WWWidget) .%0penld (Se(widgetid,2,*))
}
else/
set widgetObj = ##class(User.Widget) .%Openld (widgetid)
If '$IsObject(widgetObij) {
// Object with this ID does not exist
If $Data(%objlasterror) { Set tSC=%objlasterror }
}
Set updateJSON = %request.Content.Read()

Set tSC = widgetObj.fromJSON (updateJSON)

So, to prove that our updates are nhow working, we can use our Welcome.csp page. Let's open up W3, and update
the price, and check that everything updates correctly

Page 4 of 5

Let's write an Angular 1.x app with a Caché REST backend - Part 12
Published on InterSystems Developer Community (https://community.intersystems.com)

Edit Widget Widget of Light

Name

Widget of Light

Description

This widget can provide 10000 Candlepower

Price

53.99

Quantity
15

SAVE WIDGET

Success! We can now update Widgets in both tables seamlessly. We can implement a similar condition on our
GetWidgetByld method to load instances of either class, based on the W prefix of the ID.

We should also implement a method to add new WWWidgets next? Well, since we are winding down that catalog,
then we will not implement any methods to add new entries. We now have full WWWidget support as part of our
application
Today we:

1. Imported another Widget class

2. Implement toJSON and fromJSON methods

3. Implement logic to return and set WWWidget entries

Next time we will:

* implement an "Add New" form for Widgets

This article is part of a multi-part series on using Angular on top of Caché REST services. The listing of the full
series can be found at the Start Here page

#Angular #HTML #JavaScript #ISON #REST API #Frontend #Caché

Source
URL:https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-12

Page 5 of 5

https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-13
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-start-here
https://community.intersystems.com/tags/angular
https://community.intersystems.com/tags/html
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-12

