
Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Chris Stewart · Apr 28, 2017 4m read

Let's write an Angular 1.x app with a Caché REST backend - Part 10
In our last lesson, we implemented a new REST Service to allow us to perform CRU operations on Widgets, and
refactored our Controllers to allow the page setup to be decouple from the content.

When we created our Widget Services, we did not implement a Deletion operation, which the HTTP Delete verb
provides. As this is a base table for other parts of the Widgets Direct empire, we don't want to be able to do a hard
Delete of the WIdget values, as this could cause issues with our ordering and billing modules. So, we will add a
"Deleted" property to the class, and have the Delete operation set this Boolean flag instead. We will adjust our
GetAllWidgets method to ignore any records which are marked as "Deleted"

REST.Widget

Page 1 of 10

https://community.intersystems.com/user/chris-stewart
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-9

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 2 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 3 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

We now have a full CRUD stack in REST for our Widgets (though we do not currently handle any relationships
between widgets and their accessories, that will come later)

So, now we have our Update and Add methods for Widgets, we need a way to access them from our web
application. Since this is Widget Specific code, we will keep things neat by creating a new WidgetController.js and
place it in the /modules/widget/ web folder. We will implement a function that pops up a Material Dialog window,
using a custom html template. This is set to see the $scope from the calling application, and implements a
Controller specific to the Dialog window, with it's own scope. Inside this controller, we implement a function to take
a widget object, and PUT it to a specific Widget's Update call (there is a lot going on here, but I've tried to keep this
example as simple as I can). If the update call is successful, then the Dialog window closes, if it is not, then the
window stays open and an error is written to the Debugger console using the $log service

modules/widget/WidgetController.js

Page 4 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

We now need to update our Widget card to be bound to this new Widget Controller, and implement an ng-click
somewhere to trigger the function which displays our Dialog Window, For now, we will bind the ng-click to the
Description field, so that clicking anywhere in the Description will give us the dialog to edit that record. We pass in
the $event variable which allows the Angular runtime to determine where actions were triggered from.

Welcome.csp

Page 5 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

Finally, we need to create the Template file we specified in our mdDialog setup. We create EditWidget in the
modules/widget/ folder, and can make a (very) basic form from some Material Input components. We also
implement a Button which will trigger the saveWidget method that is located in the Dialog window's scope. We will
come back and tidy up this form later. Notice that we do not have to create a full HTML page for the Form template,
we can just provide the UI Components that are needed for the form

modules/widget/EditWidget.csp

Now, we can add the new controller to the list of User scripts on the Welcome page, compile everything and refresh
our page, so we can start editing!

Welcome.csp

Page 6 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

This looks bad. It appears the whole Angular runtime is unhappy. This is actually a trap I laid a few lessons back,
when refactoring the Controllers. The syntax for defining an Angular Module is

modules/page/pageController.js

Page 7 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

and the syntax for attaching config to an existing module is:

modules/widget/WidgetController.js

There can only be one module definition per application, but we have the injection dependency list ['ngMaterial'] in
all of our controllers. We need to remove the second argument from our .module lines in both the Widget and Page
Controller, and leave the Module definition in the widgetmaster.js. This is a nasty bug to have in your code, and will
pretty much prevent all functionality from running. Once you've encountered this once, you will never fall for it
again, so this is a public service message rather so you can learn from my mistakes :)

With our Module definition corrected, we can now load our page, and should be able to click a Widget Description
to get an Edit form

Excellent, let's load our debugger with F12, and place a breakpoint on our $http.put so we can see our request as it
is sent. We will then change the price of the Widget, and hit Save to see our request being sent to the server

WidgetController.js

Page 8 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

We can see that our update is in the payload object, which is great, but we are also sending all fields, including the
Accessories array which seems a bit wasteful (especially when we start adding more properties to our Services). If
we hit Play, then the debugger should resume, and we should see our Dialog window close, and our update
persisted to the Widget

We now have a method to update our Widgets, though our Form is very very basic, and our update payload isn't
optimised. We will cover this in future lessons

Today we:

1. Implemented the DELETE verb for Widgets
2. Created a templated Dialog window
3. Created a new Widget Controller
4. Corrected our Module definition
5. Performed our first REST PUT call

Next time we will:

Tidy up our form, by adding styling and validation

This article is part of a multi-part series on using Angular on top of Caché REST services. The listing of the full
series can be found at the Start Here page

#Angular #CSP #HTML #JavaScript #REST API #Frontend #Caché

Page 9 of 10

https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-start-here
https://community.intersystems.com/tags/angular
https://community.intersystems.com/tags/csp
https://community.intersystems.com/tags/html
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/cach%C3%A9

Let's write an Angular 1.x app with a Caché REST backend - Part 10
Published on InterSystems Developer Community (https://community.intersystems.com)

 Source
URL:https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-10

Page 10 of 10

https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-10

