
Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Chris Stewart · Apr 25, 2017 5m read

Let's write an Angular 1.x app with a Caché REST backend - Part 9
In our last lesson, we implemented a linkage to our WidgetAccessory class, and debugged some errors we
encountered along the way. We now have our data being returned by REST, but what if we want to update or add
new data to our application?

So far we have only used HTTP GET commands with our REST Services, we now have to implement PUT (which
roughly corresponds to an Update) and a POST (which roughly corresponds to a Create. Author's note: there is a
lot of writing online about why this statement isn't entirely correct, I'm not going to go into the detail
here). However, before we start, we notice that we should probably do some refactoring, since we want to be
interacting with Widgets. REST typically involves accessing a logical, human readable URL pattern, so we should
really tie our Widget methods to a Widget URL. We could just add these into the REST.Dispatch class, but this will
lead to a very bulky class. Luckily, we can set a forward from the Dispatch class to another class which also inherits
from %CSP.REST. So with this in mind, we want to create a REST.Widget class, and route all
widgetmaster/rest/widget/ calls to it.

This will unpack the URL, and forward all calls onto the specified class (and will remove the prefix from the URL, so
/widget/1 will just be forwarded as /1)

We are getting a little ahead of ourselves though. Before we start creating new Services, we should make sure we
have a way to read a JSON string, and use it to update our Widget object. Since we have a toJSON() to convert an
object instance to a JSON string, we will implement a fromJSON to do the reverse and update the properties of an
object instance and %Save() it. We could do this in a very basic way, by unpacking all of the JSON properties and
assigning them directly to the object, but this isn't very robust as it assumes that all properties will always be
populated, and is also quite unmanageable for larger numbers of properties

Page 1 of 10

https://community.intersystems.com/user/chris-stewart
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-8

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

So, instead, let's iterate over the properties of our JSON input, using the %GetIterator and %GetNext in a loop to
unpack all of our properties, filter them (for example, we wouldn't want to try to update an Id value), and then
assign these to the object instance using $PROPERTY

Much neater. We can now use this method to apply a JSON update to our object instance. Let's get back to our
new REST.Widget class. Create the class, inheriting from the %CSP.REST superclass. We will then hook up the
most common usage patterns to the appropriate verb

With these 5 Services, we can implement a full CRUD system for our class. By GETing the default path, we can
return all instances (for browsing/searching), or we can GET a specific record by its ID (useful for returning more
detail on larger objects). We can PUT an update to a specified object instance, and we can POST a new object
entirely to the default path. Finally, we can implement a DELETE call, which will perform some form of Deletion or
Archiving to the specified object.

We can implement the GetAllWidgets first, as we already have the code in our REST.Dispatch class. We create the
GetAllWidgets classmethod (with no params) and paste over the code from REST.Dispatch, removing it from that
class when we're done.

Page 2 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

Next, we can implement the GetWidgetById. This is a very easy pattern to implement. We unpack the Id value
passed in, use it to open the relevant object instance, and return the toJSON() output via a write. If the object fails
to load, then we pass that error back out as a return value

Page 3 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

Now, we move to using our new fromJSON method to update or add objects. These 2 classmethods are basically
identical, with the UpdateWidgetById using the supplied ID value to open a specific object instance, while the
AddNewWidget just performs a %New() to get a new object instance to write to. Once an object instance has been
loaded, the fromJSON is run. This takes the contents of the Request as the JSON input - Set
updateJSON = %request.Content.Read(). Any Save errors are passed back to the client. As a final step, the
current state of the object is returned using the toJSON(). This is very useful when we start implementing these
calls in our application, as we can instantly rebind the current state of the object to the display, without having to
make a secondary call to a GET.

Page 4 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

We can test these operations out in our REST debugger. When the PUT or POST verb is selected, you should get
an option to include a request Payload. We will include a full object for the POST (Create) and will update one field
for our POST. On each call, we should get the current state of the object (including our changes) as a response.
Note that in the first example (POST), the Id value is discarded, and instead comes from the %Save(), as we would
expect

Page 5 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

Now for our Description update

Page 6 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

And we can see from the response that the Description has been updated, while all other fields remain the same

Let's check that our new and updated data is available on our Welcome page. First, however, we need to point the
pageController at our new service to get the full list of Widgets (since they are no longer returned from our
HelloWorld service). We implement a second $http.get and assign the response to the Widgets array. If we fail in
our call to the Widgets service, we set the Widgets array to empty, to prevent warnings from anything trying to read
the array.

Page 7 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

A quick reload and we can see our updated data

Page 8 of 10

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

Today we:

1. Implemented a new Widget REST service, with CRU operations (we don't want to do a Delete just yet)
2. Implemented a forwarder from the REST.Dispatch to our new REST.Widget class
3. Created a fromJSON() to assign the properties of a JSON string to our Widget object
4. Implemented a GetAllWidgets REST Service
5. Implemented a GetWidgetById REST Service
6. Implemented an AddNewWidget REST Service
7. Implemented an UpdateWidgetById REST Service
8. Refactored our controller to read from the new Service

Next time we will:

Implement a fromJSON() for WidgetAccessory
Create a basic form to add new Widgets

This article is part of a multi-part series on using Angular on top of Caché REST services. The listing of the full
series can be found at the Start Here page

Page 9 of 10

https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-start-here

Let's write an Angular 1.x app with a Caché REST backend - Part 9
Published on InterSystems Developer Community (https://community.intersystems.com)

#Angular #CSP #JavaScript #REST API #Frontend #Caché

 Source
URL:https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-9

Page 10 of 10

https://community.intersystems.com/tags/angular
https://community.intersystems.com/tags/csp
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-9

