
Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Chris Stewart · Apr 24, 2017 4m read

Let's write an Angular 1.x app with a Caché REST backend - Part 7
or "Things are going to break"

We left our application over the weekend, secure in the knowledge that it was returning data from our primary
persistent class, User.Widget. However, Widgets Direct are the premier supplier of both Widgets AND Widget
Accessories, so we should really start working on adding these Accessories to our application.

We should do some housekeeping first though. Our Page Controlller code is currently sitting in the widgetmaster.js
file. As we start to build up our application and use multiple controllers, this will make the PageController hard to
find, so we should refactor it into a sensible location and file name. So let's create
modules/page/PageController.js under our web application, and paste the code in there. We can then remove the
controller code from widgetmaster.js

Page 1 of 9

https://community.intersystems.com/user/chris-stewart
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-6

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's save and reload our application to make sure everything works

Well, this clearly isn't good. How can we find out what went wrong though? As this is all client side code, we're not
going to find any errors on the server. Instead, we need to press F12 to open our browser's debugger (these
examples use Chrome, which is my personal preference as far as debuggers go, but all the major browsers have
an equivilant). All errors in the runtime will log to the Console, so find this in your debugger. You may need to
reload the page to trigger the error again.

The Angular framework very helpfully includes a link to the documentation to unpack any errors returned. This error
is telling us that it can not find the function definition of PageController in the Angular runtime. We just refactored it
into a new file, so why can't Angular see it? Did we add the new script to the CSP page, so that Angular was able
to access it?

Page 2 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

So we have learned a new lesson. The parent page must reference all scripts containing content we are trying to
use. Once we add the new pagecontroller.js as a reference, we can reload our page successfully.

Onto the accessories. Accessory information is held in the User.WidgetAccessory class, and this is linked to the
User.Widget class as a many to many relationship, through the use of a bridge class (please refer to the Many to
Many section of the Caché documentation for more info, I'm not going to cover this in depth here). Our accessory
class has a number of properties, and our bridge class has just 2, one link to Widget, and one link to Accessory,
each with an Inverse property.

To start with, we would like to output all compatible accessories with our Widgets, so we need to add these as part
of our toJSON() method, as an array. We can do this very neatly, by iterating over the relationship using GetNext to
return all Accessory objects, and return the toJSON output from each. We can then push this output onto a JSON
array, and attach this to a property of the Widget JSON.

Page 3 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's compile this, and reload our page to check that everything is still rendering OK.

Well, this clearly isn't good. That's the error message we put in to trap any failures from the REST Service. This
means we have an error on the server. However, we should still start with our trusty friend, the F12 debugger. This
will display the error as it was returned to the client. This may not seem any more useful than loading the service
using a REST debugger, but when the setup becomes more complex (with Authentication, for example), it can be
very useful to trap the exact failure scenario that the client recorded. So, we load up the debugger, and check the
console.

We have an error on the GET. In the Chrome debugger we can actually click this link to take us to the Timeline
view, which will show all server calls, and highlight the failed calls in red. We can then click this link to get the error
message returned from the server.

Page 4 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

Clicking on the red link gives us

So, it looks like we got a bit excited earlier and referenced our Access ory class before we defined a toJSON
method for it. Let's go and define a basic one now (you may notice something missing from this, it's on purpose and
will be covered next time)

Page 5 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

So, we can now compile our Accessory class and reload our page. Hopefully everything should now be returning
correctly from the REST service and the page should display

We have a working page again, but we're not displaying anything about Accessories. Let's check our JSON output
has some information about these accesssories

Page 6 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

We have our linked accessories populating arrays for each widget. As this has been a pretty long lesson so far,
let's just do something simple and display a count of compatible accessories for each widget. We will add this to
the header of each card, and just return the length of each array to serve as our count, and we can start doing
more interesting things with them next time. As in our last lesson, we don't need to do anything special to start
using these new data element, we just need to reference them.

After a quick compile, we now have our Accessories linking to our Widgets

Page 7 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

Recap

In this lesson we:

1. Broke our application by not referencing our controller JS
2. Fixed our application by using our browser debugger
3. Implemented a new Accessory class, and a relationship class to connect it to our Widget class
4. Broke our application by failing to add a toJSON to our new class
5. Fixed our application by using our browser debugger to identify the issue
6. Added a summary of linked objects using the javascript length function

Page 8 of 9

Let's write an Angular 1.x app with a Caché REST backend - Part 7
Published on InterSystems Developer Community (https://community.intersystems.com)

In our next lesson we will:

Expand our data model by completing our Accessory toJSON

This article is part of a multi-part series on using Angular on top of Caché REST services. The listing of the full
series can be found at the Start Here page

#Angular #CSP #HTML #JavaScript #REST API #Frontend #Caché

 Source
URL:https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-7

Page 9 of 9

https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-8
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-start-here
https://community.intersystems.com/tags/angular
https://community.intersystems.com/tags/csp
https://community.intersystems.com/tags/html
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-7

