Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Ward De Backer - Apr22,2017 19m read

Node.js: create a basic web app with React - part 3

Developing a Full-Stack JavaScript web app with Caché requires you to bring together the right building blocks. In
this third part of this article series | will show how to link our React app to our three back-ends we created in part 2.

If you got the React app running from part 1, we will now add some JavaScript code to connect it to Caché. |
assume your React app is still running at localhost:3000 and your QEWD server from part 2 is also running in its
own command prompt window at localhost:8080.

Stop your React app first using Ctrl-C, we will install two node modules in your C:\react\test directory:

EA Administrator: Command Prompt - O Y

react-gewd socket.io-client jquery isomorphic-fetch

SKIPPING OPTIONAL DEPENDENCY: fsevents@"l.8.8 (node_modules\ch
okidar\node modules\fsevents):
SKIPPING OPTIOMNAL DEPENDEN Unsupported platform for fsevents(

‘any"} (current: {"os":"win32","arch™:"x64"}

3

1"os" :"darwin™,"arch":

SKIPPING OPTIONAL DEPENDENCY: fsevents@l.®.17 (node_modules\re
act-scripts\node_modules\fsevents):
npm SKIPPING OPTIOMNAL DEPENDEMNCY: Unsupported platform for fsevents(
1.8.17: wanted {"os":"darwin”,"arch™:"any"} (current: {"os":"win32","arch™:

h
r/

C:\reac

Again, ignore the warnings - we just installed the react-gewd package which makes the ewd-client module available
for use in a React app. The ewd-client is used by your browser to connect to the QEWD back-end server. The
socket.io-client module contains will open our WebSocket. The jquery module is used by the ewd-client by default
to support Ajax mode (optional). The isomorphic-fetch module is needed for making REST calls to the
QEWD/REST (option 2) and CSP/REST (option 3) back-end.

Now close the previous React app instance in Chrome and restart your React app using npm start.

We will now implement the same back-end call using the three back-ends we created in part 2. This will allow you

Page 1 of 9

https://community.intersystems.com/user/ward-de-backer
https://community.intersystems.com/post/nodejs-create-basic-web-app-react-part-2
https://community.intersystems.com/post/nodejs-create-basic-web-app-react-part-1
https://community.intersystems.com/post/nodejs-create-basic-web-app-react-part-2
https://community.intersystems.com/post/nodejs-create-basic-web-app-react-part-2

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

to see clearly the differences in coding and what works best for you.

First option: connecting to Caché using QEWD/WebSockets

Go to the React test project in your Atom editor and edit the index.js file in the src subdirectory:

i nport React from'react’;

i nport React DOM from ' react-dom ;

i mport App from'./App';

i mport './index.css';

i mport { CQBEWD, QEWDProvider } from'react-gewd ;

let gewd = QEWD({
application: '"test', // application nane
| og: true,

url: "http://1ocal host: 8080
1)
React DOM r ender (
<QEWDPr ovi der gqewd={ gewd} >
<App />
</ QEVDPr ovi der >,
docunent . get El enent Byl d(' root ")

);

We added the react-gewd module, defined the gewd object instance and added the QEWDProvider outer app

component to pass the gewd object down as a property to the underlying (App) React components.

Next, edit App.js in src:

i nport React, { Conponent } from'react';
i nport logo from'./l|ogo.svg';
i mport ' ./ App.css';
cl ass App extends Conponent {
constructor (props) {
super (props);
this.state = { nmessage: 'no nmessage received yet!' };

}

handledick = () => {
let me = this;
let { gewd } = this.props;
| et messagehj = {

type: 'isctest',
/lajax: true,
paranms: {

text: 'my | SC test nessage’

}
}s
gewd. send(message@j, function(nmessageObj) {
// consol e. | og(nmessagebj) ;
ne. set State(prevState => ({
nmessage: nmessagevj . nessage. t ext
1)
1)
}

render () {
let { gewdProviderState } = this.props;

Page 2 of 9

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

return (

{
gewdProvi derState.registered ?
<di v cl assNane="App">
<di v cl assNane="App- header" >

<h2>Wel come to React </ h2>
</ di v>
<p cl assNanme="App-intro">
To get started, edit <code>src/ App.js</code> and save to rel oad.
</ p>
<button ondick={this. handl edick}>Send nmessage to | SC</button>
<p cl assName="App-intro">
{this.state. mressage}
</ p>
</div>

<p cl assName="App-intro">
Regi stering QEVD ...
</ p>
}
</ span>
)
}

}
export default App;

We added several code pieces here:

¢ a constructor for the App component where we initialise it's state (no Caché message received yet)

¢ a handleClick handler where the actual message is sent to Caché through the WebSocket - as you see, the
system plumbing is completely hidden by the gewd.send() method

* we defined the gewdProviderState object in the render() method which the QEWDProvider passes in
automatically

¢ conditional rendering depending on the gewdProviderState.registered boolean: while the WebSocket is
setting up its connection to the QEWD server in the back-end, we just show a "Registering QEWD ..."
HTML paragraph; as soon as the WebSocket connection is ready, the app will automatically re-render itself
and show our complete Ul - this feature is what makes React so powerful: it uses a virtual DOM to re-render
your Ul as efficiently as possible, only changing the Ul parts that changed

* a button to send the message to QEWD and invoke the handleClick handler

* a paragraph showing the message coming back from Caché

Save this file too and watch your Chrome reload the React app. Open now first Chrome's Devtools with Ctrl-Shift-I
and go to the React debug tab. Open the QEWDProvider component and click on the App component. You should
see the props and state of this component on the right.

Now click on the "Send message" button and watch the message sending in Devtools - it will update the message
property in the state and your first WebSocket message will appear in your HTML too.

Congratulations! You just finished your first React WebSocket app with Caché at the back-end!

You can now also check the contents of the *nodeTest global by opening a Caché terminal. You should see the
message appear with a different timestamp each time you press the button.

Btw, you can also monitor and debug your back-end code running in QEWD using similar tools. | will show how this
works in a future article about debugging.

Page 3 of 9

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

You can test one more thing: uncomment now "ajax: true" inside the messageObj in handleClick(). Save App.js,
open the Network debug tab in Chrome's Devtools and watch now the same message going out via Ajax:

m B = [B ReactApp X
C) | ® localhost:2000 T | °F E & =

Welcome to React

To get started, edit src/App. js and save to reload.
Send message to ISC

You sent: my ISC test message at Sat, 22 Apr 2017 13:47:11 GMT

= ﬂ Elements Profiles Console Sources Network Timeline Application Security Audits Redux React Sencha a1 PoX
® O W YT | View iI= = Preserve log # D ffline No throttling v
100000 ms 200000 ms 200000 ms 400000 ms. 500000 ms 700000 ms 800000 ms 900000 ms 1000000 ms 1100000 ms 1200000 ms 1300000 ms 1400000 ms 1500000 ms 1600000 |
Name % | Headers | Preview Response
| logo.sasoveetsvg " HReterer: htt N
nfolt=1492668627702 User-Agent: Mozilla/5.8 (Windows NT 18.8; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.8.2987.133 Safari/537.36
|| websocket ¥ Request Payload
backend.js pe: "isctest”, ajax: true, params: {text: "my ISC test message™},.}

| ajax
[ajax

9 requests | 386 KB transferred | F.

y ISC test message"}

6-dd1c-425b-a%a6-eacfdaBabdd"

Note: we didn't need to rewrite our code, we just enabled Ajax mode for this message - watch also the response in
the response debug tab.

* Btw, you don't need to do this in every message, you can also enable ajax for the whole application by enabling it in the gewd config in index.js. All messages will be sent

using Ajax in this mode.

You'll notice the token inside the message: this is generated for you by QEWD for each message you send to the
back-end and ensures secure communications because each client session has its own unique token. This is also
womething what makes QEWD really attractive: it does all this plumbing for you behind the scenes, allowing the
developer to concentrate on your application code.

Before you start your own experiments with this React technology, | stronly recommend to take a look at and follow
the React tutorials first. This is a necessary step to understand the difference between plain HTML and JSX (the
"HTML" tags in the code). HTML and JSX don't work the same! These docs also contain important information
about how to write your JavaScript correctly, it will save you a lot of (debugging) time!

Second option: connecting to Caché using QEWD/REST

We will now change this same application code to use REST calls. To keep modifications to a minimum, | will keep
the QEWD WebSocket code in index.js as it doesn't interfere with our modifications for REST calls.

Just edit App.js and modify your code for REST (in bold):

i nport React, { Conponent } from'react’;
i mport logo from'./logo.svg' ;

i mport './App.css';

Page 4 of 9

https://facebook.github.io/react/

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

i mport fetch from'isonorphic-fetch';

cl ass App extends Conponent {
constructor(props) {
super (props);
this.state = { nessage: 'no nessage received yet!' };
}
handl eClick = () => {
let me = this;
/*
let { gewd } = this.props;
| et nmessagehj = {

type: 'isctest',
aj ax: true
parans: {
text: 'my | SC test nessage’
}

1
gewd. send(messageQj, function(nmessageObj) {
/1 consol e. | og(nmessagebj) ;
ne. set State(prevState => ({
nmessage: nmessagevj . nessage. t ext
1)
1)
*/

var headers = new Header s({
"Content-Type": 'application/json'
1)
fetch(' http://1ocal host: 8080/ testrest/isctest?text=REST+cal | +t o+cache', {
met hod: ' GET',
headers: headers,
node: 'cors'
ti meout: 10000
}
.then(response => response.json())
.then(response => {
ne. set State(prevState => ({
nessage: response.text
1)
|3

}
render () {

let { gewdProviderState } = this.props;
return (

{
gewdPr ovi der St ate. regi stered ?
<di v cl assNane="App" >
<di v cl assNane="App- header" >
<i mg src={l ogo} cl assName="App-Iogo" alt="1ogo" />
<h2>Wel cone to React </ h2>
</ div>
<p cl assName="App-intro">
To get started, edit <code>src/ App.js</code> and save to rel oad.
</ p>
<button ond ick={this. handl el ick}>Send nmessage to | SC</button>
<p cl assName="App-intro">
{this.state. message}
</ p>

Page 5 of 9

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

</ di v>

<p cl assNane="App-intro">

Regi stering QEVD . ..
</ p>

}

</ span>

)

}
export default App;

You see we only needed to comment out the gewd.send() code and replace it with a standard JavaScript fetch().
This is the new syntax for issueing Ajax requests in the browser and in Node.js (hence the name of the module:

isomorphic fetch - works both on the server and on the client).

Save App.js again and try it in Chrome by pressing the button again. You'll see in Devtools the REST call now:

LB (] 0/ @ Rreactipp x
C (% | ® localhost:3000 | F B & =

Welcome to React

To get started, edit src/aApp. js and save to reload.
Send message to ISC

You sent: REST call to cache at Sat, 22 Apr 2017 15:30:46 GMT

= ﬂ Elements Profiles Console Sources Network Timeline Application Security Audits Redux React Sencha H 4
® 0 LT == Preserve log # Disable cache Offline No throttling v
200000 ms 400000 ms 600000 ms 800000 ms 1000000 ms 1200000 ms 1400000 ms 1600000 ms 1800000 ms 2000000 ms 2200000 ms 2400000 ms
Name X | Headers | Preview Response Timing
OGO SUSTYEETEVY . CONENEype: @ppLiCa CIony JSomn N

backend s Host: localhost: 8890
- Origin: http://localhost: 3000
Pragma: no-cache
Referer: http://localhost:30e9/
User-Agent: Mozilla/5.8 (Windows NT 18.8; WOWE4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.8.2987.133 Safari/537.36

|| info?t=1492675042839

¥ Query String Parameters view source view URL encoded

9 requests | 390KB transferred | F. text: REST call to cache

As you see, we didn't need to change a lot to our application to use a completely different back-end technology!

Third option: connecting to Caché using CSP/REST

This one is now really easy to modify: we just need to change our REST url:

i nport React, { Conponent } from'react';
import logo from'./logo.svg';

i mport './App.css';

i mport fetch from'isonorphic-fetch';

Page 6 of 9

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

cl ass App extends Conponent {
constructor (props) {
super (props) ;
this.state = { nmessage: 'no nmessage received yet!' };
}
handl e ick = () => {
let me = this;
/*
let { gewd } = this.props;
| et nmessagehj = {

type: 'isctest',
aj ax: true
parans: {

text: 'my | SC test nessage'
}
1
gewd. send(messageQbj, function(nmessageObj) {
/1 consol e. | og(nmessagebj) ;
ne. set State(prevState => ({
nmessage: nmessagevj . nessage. t ext
1)
1)
*/

var headers = new Header s({
"Content-Type": 'application/json'
1)
fetch(' http://local host: 57772/ csp/user/testrest/isctest/REST+cal | +t o+tcache', ({
met hod: ' GET',
headers: headers,
node: 'cors'
ti meout: 10000
})
.then(response => response.json())
.then(response => {
consol e. | og(response);
ne. set State(prevState => ({
nessage: response.text
1)
|3

}
render () {

let { gewdProviderState } = this.props;
return (

{
gewdPr ovi der State. regi stered ?
<di v cl assNane="App" >
<di v cl assNane=" App- header" >

<h2>Wé| cone to React </ h2>
</ div>
<p cl assName="App-intro">
To get started, edit <code>src/ App.js</code> and save to rel oad.
</ p>
<button ond ick={this. handl el ick}>Send nmessage to | SC</button>
<p cl assName="App-intro">
{this. state. message}
</ p>
</ di v>

Page 7 of 9

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

<p cl assName="App-intro">
Regi stering QEVD ...
</ p>
}
</ span>
);
}

}
export default App;

Again, you can easily test it out in Chrome using CSP/REST now:

m B 2] [B React App *®
C 1} | ® localhost:3000 Y| E @ =

Welcome to React

To get started, edit src/App. js and save to reload.
Send message to ISC

You sent: REST+call+to+cache at Apr 22, 2017 16:32:42

= ﬂ Elements Profiles Console Sources Network Timeline Application Security Audits Redux React Sencha Pox
® 0 ™Yy Offline Nao throttling v
200000 ms 1200000 ms 1400000 ms 1600000 ms 1800000 ms 2000000 ms 2200000 ms 2400000 ms

Name ® | Headers | Preview Response Timing

000, 5050YEETSVY
- ; “ | ¥ General
| backends Request URL: http://localhost:57772/cspfuser/testrest/isctest/REST+call+to+cache
|| infolt=1432875156838 Request Method: GET
|| websocket Status Code: @ 208 0K

Remote Address: 127.8.9.1:57772

|| REST+call+to+cache
Referrer Policy: no-referrer-when-downgrade

[] REST+call+to+cache

¥ Response Headers view

o 200 T e source
8 requests | 300KE transferred | | CCpos CONTROL-ALLOW-CREDENTIALS: tru

Congratulations! You've created a React app with three possible back-ends.

This example is kept as minimal as possible to show the basic principles of modern JavaScript application
development. This is of course only the beginning and | hope it will get you started with Full-Stack JavaScript
development using Caché. Maybe we should call this new collection of technologies the CNQR
(Caché/Node.js/IQEWD/React) stack?

Also note that you could easily replace React with AngularJS, Vue.js, ... or any other JavaScript framework. This
way of working allows you to change your front-end rather quickly without many changes needed to your back-end.

You'll also have noticed that the declarative Ul definition React uses in this example still contains the business logic
(event handlers) in the same source file. With React, you can do better and create a clean separation between Ul
definition and logic. For more powerful data handling client-side, you can use the Redux module. It gives you a
central store for your application state (in our example here the Ul state is kept inside the App component). |
deliberately didn't introduce it here for this example, as it makes your code a lot bigger. But for larger applications,
it's certainly an excellent way of structuring your application code! | will try to cover this module in a later part of this

Page 8 of 9

http://redux.js.org/

Node.js: create a basic web app with React - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

series.

#JavaScript #JSON #Node.js #React #REST API #Caché

Source URL:https://community.intersystems.com/post/nodejs-create-basic-web-app-react-part-3

Page 9 of 9

https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/nodejs
https://community.intersystems.com/tags/react
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/nodejs-create-basic-web-app-react-part-3

