
Let's write an Angular 1.x app with a Caché REST backend - Part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Chris Stewart · Apr 18, 2017 3m read

Let's write an Angular 1.x app with a Caché REST backend - Part 2
or "So you just got yelled at by your boss, for sending him an unformatted Hello World webpage"

Our previous lesson ended with us serving a Message value obtained from a Caché REST service to the client,
using Angular as a runtime. While there is a lot of moving parts involved in this process, the page is not especially
exciting at the moment. Before we can start adding new features, we should take a step back and review our tools.

This tutorial is using the JSON functionality built into 2016.2+ versions of Caché. This functionality is partially
available in 2016.1 but utilizes a different syntax which will not be forward compatible.

In post 1, we verified the output of our GET request using a standard browser, and viewing the plain text output on
the page. This isn't adequate to test anything more than the most basic scenarios, so we should install something
which can craft custom HTTP requests, and then digest the responses. There are numerous options, ranging from
the command line curl tool to fully featured test harnesses. The RESTLET client (formerly called DHC) is available
as a Chrome plugin, and provides excellent support for HTTP requests with JSON payloads. This is the client
which I will use in all future posts, but any HTTP debugger will work.

These posts will not be an Angular 1.x tutorial. There are numerous excellent free tutorials available online. This
one was particularly clear and provides a good introduction to the Angular framework.

So, back to our code. Let's begin by testing out our new HTTP debugger. Load your REST URL, and send the
request. You should see something like this

At this point, you're probably asking "Chris, I thought we were going to be using JSON to return our data from
REST? This return is just plain text?" That's correct, and we need to do some more work on our REST service to
make our output a little more usable. Let's go back to Studio and open our REST.Dispatch class. We need to

Page 1 of 4

https://community.intersystems.com/user/chris-stewart
http://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-1-many
https://restlet.com/modules/client/
https://www.codeschool.com/courses/shaping-up-with-angularjs
https://www.codeschool.com/courses/shaping-up-with-angularjs

Let's write an Angular 1.x app with a Caché REST backend - Part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

create a JSON object (we are using the {} shortcut to do this), and then we will set a property of this object to hold
our Message. We will then output this JSON by rewriting its output of the %ToJSON method. Then, as before, we
will output an OK status

Let's rerequest from our service

We now have a JSON string, but the pretty printing isn't applied. It's almost as if the client doesn't know this is
supposed to be JSON. If we look at the Content-Type, the message is being returned as text/html. While some
clients will be able to decipher the JSON content automatically, we should be clear that we are passing JSON as a
response. Let's go back to our class, and add the Content-Type to our %response. We will also change our
message to a more appropriate Welcome for Widgets Direct

Page 2 of 4

Let's write an Angular 1.x app with a Caché REST backend - Part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

If we now reload our request, we will see properly pretty-printed JSON.

We are now serving JSON to our client. Let's reload our Welcome page to see if this has made any difference

There is a difference, but not exactly what we are wanting. We are now displaying the whole JSON object, as our
controller is binding the entire data section to the $scope.message. We need to amend our controller to unpack the
Message field correctly.

With our message now unpacked and set properly, we can refresh our page to get our new Welcome

Recap

In this lesson we:

Page 3 of 4

Let's write an Angular 1.x app with a Caché REST backend - Part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

1. Learned not to send "Hello World" pages to our boss
2. Reviewed our tooling
3. Viewed our REST output in an HTML debugger
4. Converted our REST service to output JSON correctly
5. Updated our page controller to unpack our JSON response

In our next lesson we will:

Add a JSON array to our service
Add a repeating display of array elements to our page

This article is part of a multi-part series on using Angular on top of Caché REST services. The listing of the full
series can be found at the Start Here page

#Frontend #HTML #JavaScript #JSON #REST API #Tutorial #Caché

 Source
URL:https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-2

Page 4 of 4

https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-3
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-start-here
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/html
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/lets-write-angular-1x-app-cach%C3%A9-rest-backend-part-2

