
Debugging Web
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Eduard Lebedyuk · Apr 17, 2017 4m read

Debugging Web
In this article I'll cover testing and debugging Caché web applications (mainly REST) with external tools. Second
part covers Caché tools.

You wrote server-side code and want to test it from a client or already have a web application and it doesn't work.
Here comes debugging. In this article I'll go from the easiest to use tools (browser) to the most comprehensive
(packet analyzer), but first let's talk a little about most common errors and how they can be resolved.

Errors

401 Unauthorized

I think it's the most often encountered error during the deploy to production. Local development server usually has
minimal security setting or normal but vanilla security. Production server, however can have a more restrictive
scheme. So:

Check that you're logged in
Check that user has access to the database/table/procedure/row/column you want to access
Check that OPTIONS request can be performed by unauthorized user

404 Not Found

Check:

Url is correct
If it's a new application and you're using external web-server reloading web-server can help

Application errors

In some way the easiest to find - stack trace helps. Resolution is completely application-specific.

Debugging tools

Web browser

The first and always available debug tool is a Web browser, preferably Chrome but Firefox would also suffice. GET
requests can be tested by entering the URL into address bar, all other requests require a web application or writing
js code. General approach is:

Press F12 to open developer tools.
Go to Network tab
Check Preserve Log checkbox, if not set
Display only XHR requests
Perform buggy action in web application

Page 1 of 6

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/debugging-web-part-2
https://community.intersystems.com/post/debugging-web-part-2

Debugging Web
Published on InterSystems Developer Community (https://community.intersystems.com)

From here you can examine requests and resend them. Firefox can also edit requests before repeating them.

Pros:

Page 2 of 6

Debugging Web
Published on InterSystems Developer Community (https://community.intersystems.com)

Always available
Easy to use (end users can send screenshots of Network and Console tabs)
It's end user environment

Cons

Doesn't show partially send/broken/etc. responses
Slow on big responses
Slow on big number of responses
Everything is done manually

REST client

REST Client is a standalone web application or web browser addon made specifically for testing web applications. I
use Postman, but there are a lot of them. Here's how debugging on Postman looks like:

Postman works with requests grouped into collections. Request can be sent into the environment. Environment is a
collection of variables. For example in my CACHE@localhost environment host variable is set to localhost and
user to _SYSTEM. When request is sent variables are replaced with their values for chosen environment and the
request is sent.

Here's a sample collection and environment for MDX2JSON project.

Pros:

Page 3 of 6

https://www.getpostman.com/
mailto:CACHE@localhost
https://github.com/intersystems-ru/Cache-MDX2JSON/blob/master/MDX2JSON.postman_collection.json
https://github.com/intersystems-ru/Cache-MDX2JSON/blob/master/CACHE.postman_environment.json

Debugging Web
Published on InterSystems Developer Community (https://community.intersystems.com)

Write once - use everywhere
Better control over request
Response prettification

Cons:

Debugging chained requests (response to request1 can force either request2 or request 2B) is still manual
(Feb 22 update: Possible in Postman)
Sometimes fails on partially send/broken/etc. responses

HTTP Debugging proxy

A standalone application that logs HTTP(S) traffic. Logged requests can be modified and resend. I use Charles and
Fiddler.

Pros:

Processes partially send/broken/etc. responses
Response prettification
Better support for HTTPS traffic (than in packet analyzer)
Can save capture sessions

Cons:

Page 4 of 6

https://www.charlesproxy.com/
http://www.telerik.com/fiddler

Debugging Web
Published on InterSystems Developer Community (https://community.intersystems.com)

Something (web application/REST client/JS code) is required to send the request

Packet analyzer

A computer program that can intercept and log traffic that passes over a network. As data streams flow across the
network, the sniffer captures each packet and, if needed, decodes the packet's raw data. This is the most
comprehensive option, but also requires some skill to operate properly. I use WireShark. Here's a little guide on
how to install and use it:

1. If you're going to capture local packets, read about loopback and install prerequisite software (npcap for
windows)

2. Install WireShark
3. Configure capture filters (for example filter to capture only traffic on 57772: port 57772
4. Start capture
5. Configure display filters (for example filter to display only http traffic to a specific ip: ip.addr == 1.2.3.4 &&

http

Here's a sample capture of http traffic (display filter) on 57772 port (capture filter):

 Pros:

Processes partially send/broken/etc. responses
Can capture large amounts of traffic
Can capture anything
Can save capture sessions

Cons:

Something (web application/REST client/JS code) is required to send the request

What to use

Well, that depends on a purpose. First of all we can aim to either log (debug proxy, packet analyzer) or generate
(browser, REST client) requests.

If you're developing a REST Web API, then REST client is the fastest way to test that it works.

If, however, requests from REST client work, but client web application does not, browser, http debug proxy and

Page 5 of 6

https://www.wireshark.org/
https://wiki.wireshark.org/CaptureSetup/Loopback
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/DisplayFilters

Debugging Web
Published on InterSystems Developer Community (https://community.intersystems.com)

packet analyzer may be required.

If you have clients and you need to develop server-side api to work with them, you'll need http debug proxy or
packet analyzer.

It's better to be familiar with all 4 types of tools and quickly switch between them if the current one is insufficient for
the job.

Sometimes the right tool is obvious.

For example recently I developed server side API for one popular http extension protocol, the requirements were:

Clients are already written and we can't change their code
Different clients behave differently
Behavior on http and https differs
Behavior with different authentication types differs
Up to hundred requests per second per client
Everyone ignores the RFC

There's only one solution here - packet analyzer.

Or if I'm developing a REST API for JS consumption, REST client is a perfect tool for testing.

When debugging web application start with web browser.

In Part 2 we'll discuss what can be done (a lot) for web debugging on the Caché side.

What are your approaches to debugging client-server communication?

#Best Practices #CSP #Debugging #Frontend #REST API #SOAP #Caché

 Source URL:https://community.intersystems.com/post/debugging-web

Page 6 of 6

https://community.intersystems.com/post/debugging-web-part-2
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/csp
https://community.intersystems.com/tags/debugging
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/soap
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/debugging-web

