Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Eduard Lebedyuk - Mar24,2017 gy read

Logging using macros in InterSystems IRIS

In my previous article, we reviewed possible use-cases for macros, so let's now proceed to a more comprehensive
example of macros usability. In this article we will design and build a logging system.

Logging system

Logging system is a useful tool for monitoring the work of an application that saves a lot of time during debugging
and monitoring. Our system would consist of two parts:

¢ Storage class (for log records)
¢ Set of macros that automatically add a new record to the log

Storage class

Let's create a table of what we need to store and specify when this data can be obtained — during compilation or at
runtime. This will be required when working on the second part of the system - macros, where we will aim to have
as many loggable details during compilation as possible:

Information Obtained
during
Event type Compilation
Class name Compilation
Method name Compilation
Arguments passed to a method Compilation
Line number in the cls source code Runtime
Line number in the generated int code Runtime
Username Runtime
Date/Time Runtime
Message Runtime
IP address Runtime

Let's create an App.Log class containing the properties from the table above. When an App.Log object is created,
User Name, Date/Time and IP address properties are filled out automatically.

App.Log class:

O ass App. Log Extends %ersi st ent
{

/11 Type of event
Property Event Type As %String(MAXLEN = 10, VALUELI ST = ", NONE, FATAL, ERROR, WARN, | NFQ, S

Page 1 of 8

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/macros-intersystems-cach%C3%A9

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

TAT, DEBUG RAW) [Initial Expression = "I NFO'];

/11 Name of class, where event happened
Property C assNane As %bDi ctionary. Cl assname(MAXLEN = 256);

/1l Name of nethod, where event happened
Property MethodNane As %5t ri ng(MAXLEN = 128);

/11 Line of int code
Property Source As ¥string(MAXLEN = 2000);

/11 Line of cls code
Property SourceCLS As %String(MAXLEN = 2000);

/1l Cache user
Property UserName As ¥String(MAXLEN = 128) [Initial Expression = {$usernane}];

/1l Argunents' val ues passed to nethod
Property Argunents As %string(MAXLEN = 32000, TRUNCATE = 1);

/1] Date and tine
Property TinmeStanp As 9%i neStanp [|nitial Expression

{$zdt ($h, 3, 1)} 1;

/1l User nessage
Property Message As %Stri ng(MAXLEN = 32000, TRUNCATE

1);

/1l User |P address
Property Clientl PAddress As %String(MAXLEN = 32) [Initial Expression = {..GetCientAd
dress()} I;

/1] Determ ne user |P address
Cl assMet hod Get Ci ent Address()

{
/'l YCSP. Session source is preferable
#di m % equest As %CSP. Request
If ($d(% equest)) {
Ret urn % equest . Cgi Envs(" REMOTE_ADDR")
}
Return $system Process. O i ent| PAddress()
}
}

Logging macros

Usually, macros are stored in separate *.inc files containing their definitions. The necessary files can be included
into classes using the Include MacroFileName command, which in this case will look as follows: Include
App.LogMacro.

To start, let’s define the main macro that the user will add to their application’s code:

#defi ne LogEvent (% ype, %vessage) Do ##cl ass(App. Log). AddRecor d($$$Cur rent d ass, $$$C
urrent Met hod, $$$St ackPl ace, % ype, $$$Met hodAr gunents, %essage)

This macro accepts two input arguments: Event Type and Message. The Message argument is defined by the user,

Page 2 of 8

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

but the Event Type parameter will require additional macros with different names that will automatically identify the
event type:

#defi ne LogNone(%ressage) $$SLogEvent (" NONE', %ressage)
#defi ne LogError (%ressage) $$$LogEvent ("ERROR', %ressage)
#defi ne LogFat al (%ressage) $$$LogEvent (" FATAL", %ressage)
#def i ne Log\War n(%ressage) $$$LogEvent ("WARN', %ressage)
#def i ne Logl nf o(%ressage) $$$LogEvent ("I NFO', %ressage)
#defi ne LogSt at (%ressage) $$SLogEvent (" STAT", %ressage)
#defi ne LogDebug(%ressage) $$SLogEvent (" DEBUG', %ressage)
#defi ne LogRaw %ressage) $$SLogEvent ("RAW, %ressage)

Therefore, in order to perform logging, the user only needs to place the $$$LogError("Additional message") macro
in the application code.

All we need to do now is to define the $$$CurrentClass, $$$CurrentMethod, $$$StackPlace, $$$MethodArguments
macros. Let's start with the first three:

#define Currentd ass #H#EXpr essi on($$$quot e(%l assnane))
#defi ne Current Met hod #H#EXpr essi on($$$quot e(%ret hodnane))
#define StackPl ace $st ($st(-1), "PLACE")

%classname, %omethodname variables are described in the documentation. The $stack function returns INT code
line number. To convert it into CLS line number we can use this code.

Let's use the %Dictionary package to get a list of method arguments and their values. It contains all the information
about the classes, including method descriptions. We are particularly interested in the
%Dictionary.CompiledMethod class and its FormalSpecParsed property, which is a list:

$I b(3l b("Nane","d asss", "Type(Qut put/ByRef)","Default value "),...)

corresponding to the method signature. For example:

Ol assMet hod Test(a As Y nteger = 1, ByRef b = 2, Qutput c)

will have the following FormalSpecParsed value:
$1 b(
$lb("a","%.ibrary.Integer","","1"),
$l b("b","%.ibrary. String","&","2"),
$l b("c","%.ibrary. String","*",""))

We need to make $$$MethodArguments macro expand into the following code (for the Test method):

"a="_$g(a,"Null")_"; b="_$g(b,"Null")_"; c="_%g(c,"Null")_";"
To achieve this, we have to do the following during compilation:
1. Get a class name and a method name
2. Open a corresponding instance of the %Dictionary.CompiledMethod class and get its FormalSpec property

3. Convert it into a source code line

Let's add corresponding methods to the App.Log class:

Page 3 of 8

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_macros
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_fstack
https://community.intersystems.com/post/cls-location-int-code?page=16#comment-88716

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

O assMet hod Get Met hodAr gunent s(Cl assNane As ¥string, MethodNanme As ¥String) As %Strin

g

{
Set list = ..GetMethodArgunent sLi st (C assNane, Met hodNane)
Set string = ..ArgunentsListToString(list)
Return string

}

O assMet hod Get Met hodAr gunent sLi st (O assNane As %Gtring, MethodNanme As %Gtring) As %
i st

{
Set result = ""
Set def = ##cl ass(%bictionary. Conpi | edMet hod) . %penl d(Cl assNane _ "||" _ Met hodNa
ne)
If ($lshject(def)) {
Set result = def. Fornal SpecPar sed
}
Return result
}
O assMet hod ArgunentsListToString(List As %.ist) As ¥String
{
Set result = ""
For i=1:1:8ll(List) {
Set result = result _ $$$quote($s(i>1=0:"",1:"; ") _ $lg($lg(List,i))_"=")
_ " %g(" _ $lg($lg(List,i)) _ ","_$$Squote(..#Null)_")_"
_$s(i=$lI(List)=0:"",1:$$$quote(";"))
}
Return result
}

Let's now define the $$$MethodArguments macro as:

#def i ne Met hodAr gunent s ##Expressi on(##cl ass(App. Log) . Get Met hodAr gunent s(%! assnane, %
nmet hodnane))

Use case

Next, let's create an App.Use class with a Test method to demonstrate the capabilities of the logging system:

I ncl ude App. LogMacro

Cl ass App.Use [Conpil eAfter = App. Log]

{

/11 Do ##cl ass(App. Use). Test ()

Cl assMet hod Test(a As YW nteger = 1, ByRef b = 2)

{

}
}

$$SLogWar n(" Text ")

As a result, the $$$LogWarn("Text") macro in the int code converts into the following line:

Page 4 of 8

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Do ##cl ass(App. Log) . AddRecor d(" App. Use", "Test", $st ($st(-1), "PLACE"), "WARN", "a="_$g(a,
“Nul I")_"; b="_%$g(b,"Null"™)_";", "Text")

Execution of this code will create a new App.Log record:

10| Arguments ClassName |ClientiPAddress | EventType Message MethodMame Source SourceCL5 Time 5tamp UserMame
1 8=1; b=2; App.Use2 127.0.0.1 WARM Text Test zTest+1*App.Use2.1 +1 App.Use:Test+1 2017-03-24 18:38:34 UnknownlUser
Improvements

Having created a logging system, here's some improvement ideas:

¢ First of all, a possibility to process object-type arguments since our current implementation only logs object
oref.
* Second, a call to restore the context of a method from stored argument values.

Processing of object-type arguments

The line that puts an argument value to the log is generated in the ArgumentsListToString method and looks like
this:

"_$g(" _ $lg(slg(List,i)) _ ","_$$$quote(..#Null)_")_"

Let's do some refactoring and move it into a separate GetArgumentValue method that will accept a variable name
and class (all of which we know from FormalSpecParsed) and output a code that will convert the variable into a
line. We'll use existing code for data types, and objects will be converted into JSON with the help of SerializeObject
(for calling from the user code) and WriteJSONFromObject (for converting an object into JSON) methods:

O assMet hod Get Argunent Val ue(Nanme As %string, ClassNane As % ctionary. Cached assnane
) As %Btring

{
I f $C assMet hod(C assName, "%Extends", "%RegisteredObject") {
/1 it's an object
Return "_##cl ass(App. Log). Serializeject("_Nanme _ ") _"
} Else {
/1 it's a datatype
Return "_$g(" _ Nane _ ","_$$Squote(..#Null)_")_"
}
}
O assMet hod Serialize(hject(Ohject) As ¥String
{
Ret urn: ' $l sObj ect (Obj ect) Obj ect
Return .. WiteJSONFronthj ect (Obj ect)
}

O assMet hod Wit eJSONFromObj ect (Cbject) As ¥%Gtring [ProcedureBlock = 0]
{

Set A dlORedirected = ##cl ass(%evice).ReDirectl)

Set A dvhenoni ¢ = ##cl ass(%evi ce). Get Mhenoni cRout i ne()

Set AdIO= $io

Try {
Set Str=""

Page 5 of 8

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

//Redirect 10to the current routine - nakes use of the | abels defined bel ow
Use $io:: (""" _$ZNAME)

/1 Enabl e redirection
Do ##cl ass(%Device). ReDirectl (1)

Do ##cl ass(%ZEN. Auxi liary.jsonProvi der). %j ect ToJSON(Obj ect)

} Catch Ex {
Set Str =""
}
/I Return to original redirection/ menonic routine settings
If (A dMhemonic '="") {
Use A dIO: (""" _dA dMvnenoni c)
} Else {
Use A dIO

}
Do ##cl ass(%Device). ReDirect| Q' A dl ORedi r ect ed)

Quit Str

/1 Labels that allow for 10 redirection

/1 Read Character - we don't care about reading
rchr(c) Qui t

/! Read a string - we don't care about reading
rstr(sz,to) Quit

/! Wite a character - call the output | abel

wehr (s) Do out put($char(s)) Quit

/I Wite a formfeed - call the output |abel
wff () Do out put ($char(12)) Quit

/1 Wite a newline - call the output I|abel
wnl () Do out put ($char(13,10)) Quit

/1 Wite a string - call the output |abel
wstr(s) Do output(s) Quit

/1 Wite atab - call the output |abel
wt ab(s) Do output($char(9)) Quit

/! Qutput label - this is where you would handl e what you actually want to do.
/1 in our case, we want to wite to Str

out put (s) Set Str = Str_s Quit

}

A log entry with an object-type argument looks like this:

2 a=1; b={ "prop1™:123, "prop2"“sbc’ ; App.Use | 127.0.0.1 WARN User message TestWithObjects zTestWithObjects+1*App.Use.1 +1| App.Use: TestWithObjects+1 2017-03-24 16:40:56 Unknownlser

Restoring the context

The idea of this method is to make all arguments available in the current context (mostly in the terminal, for
debugging). To this end, we can use the ProcedureBlock method parameter. When set to 0, all variables declared
within such a method will remain available upon quitting the method. Our method will open an object of the
App.Log class and deserialize the Arguments property.

O assMet hod LoadContext(ld) As %status [ProcedureBlock = 0]
{

Return:'..%xistsld(ld) $$SXK

Set Gbj = ..%penld(1d)

Set Argunents = Cbj.Argunents

Page 6 of 8

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Set List = ..CetMethodArgunentsLi st (Obj.d assNane, Cbj . Met hodNane)
For i=1:1:$Length(Arguments,”;")-1 {
Set Argument = $Piece(Argunents,";",i)
Set @l g($lg(List,i)) = ..Deserializeject($Piece(Argunent,"=",2), 3l g($lg(Li
st,i),2))
}
Kill Obj, Argunents, Argunment,i,ld,List
}
O assMet hod DeserializeOoject(String, CassNanme) As ¥String
{
I f $d assMet hod(d assNanme, "%Extends", "%Regi steredbject") {
/1 it's an object
Set st = ##cl ass(%EN. Auxi liary.jsonProvider). % onvertJSONToChj ect(String,,.o0
bj)
Ret ur n: $$3$1 SOK(st) obj
}
Return String
}

This is how it looks in the terminal:

>zwW
>do ##cl ass(App. Log) . LoadCont ext (2)
>zw

a=1
b=<OBJECT REFERENCE>[2@@EN. pr oxybj ect]

>zw b
b=<OBJECT REFERENCE>[2@@EN. pr oxybj ect]
R L general information ---------------

| oref value: 2

| cl ass nane: %ZEN. pr oxyQbj ect

| reference count: 2

LR attribute values ------------------
| %hanged = 1

| %at a(" propl") 123

| %dat a(" prop2") "abc"
|

% ndex = ""

What's next?

The key potential improvement is to add another argument to the log class with an arbitrary list of variables created
inside the method.

Conclusions

Macros can be quite useful for application development.

Questions

Is there a way to obtain line number during compilation?

Page 7 of 8

Logging using macros in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Links

e Part I. Macros
e GitHub repository

#Best Practices #Compiler #0bject Data Model #Caché #InterSystems IRIS

Source URL:https://community.intersystems.com/post/logging-using-macros-intersystems-iris

Page 8 of 8

https://community.intersystems.com/post/macros-intersystems-cach%C3%A9
https://github.com/intersystems-ru/Log
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/compiler
https://community.intersystems.com/tags/object-data-model
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/logging-using-macros-intersystems-iris

