
Containerization Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Dmitry Maslennikov · Mar 13, 2017 6m read

Containerization Caché
In this article, I am going to give some examples to get your own docker image with InterSystems
Caché/Ensemble.

Let’s start from the beginning, from Dockerfile. Dockerfile is a plaintext configuration file which is used to build a
docker image.

I would recommend using centos as a core distributive for the image because InterSystems supports RedHat, and
Centos is the most compatible distributive.

FROM centos:6

You can add your name as an author of this file.

MAINTAINER Dmitry Maslennikov <mrdaimor@gmail.com>

In the first step, we should install some dependencies, and configure operating systems, as I configured TimeZone
here. These dependencies needs for the installation process, and for Caché itself.

update OS + dependencies & run Caché silent instal
RUN yum -y update \
 && yum -y install which tar hostname net-tools wget \
 && yum -y clean all \
 && ln -sf /etc/locatime /usr/share/zoneinfo/Europe/Prague

Let’s define the folder where we will store installation distributive.

ENV TMP_INSTALL_DIR=/tmp/distrib

Let's set up some arguments with default values. These arguments can be changed during the build process.

ARG password="Qwerty@12"
ARG cache=ensemble-2016.2.1.803.0

Then we should define some environment variables for silent installation.

ENV ISC_PACKAGE_INSTANCENAME="ENSEMBLE" \
 ISC_PACKAGE_INSTALLDIR="/opt/ensemble/" \
 ISC_PACKAGE_UNICODE="Y" \
 ISC_PACKAGE_CLIENT_COMPONENTS="" \
 ISC_PACKAGE_INITIAL_SECURITY="Normal" \
 ISC_PACKAGE_USER_PASSWORD=${password}

I decided to set security to the normal level, and I should set some password.

Page 1 of 5

https://community.intersystems.com/user/dmitry-maslennikov-5
https://docs.docker.com/engine/getstarted/
https://docs.docker.com/engine/reference/builder/

Containerization Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

You can look at the documentation to find more options.

WORKDIR ${TMP_INSTALL_DIR}

Working directory would be used as a current directory for the next commands. If the directory does not exist, it
would be created.

COPY cache.key $ISC_PACKAGE_INSTALLDIR/mgr/

You can include license key file if you are not going to publish this image in public repositories.

Now we should get the installation distributive, and there are several ways to do it:

Download manually and place this file near to Dockerfile and use this line.

ADD $cache-lnxrhx64.tar.gz .

This command will copy and extract distributive to our working directory.

Download file directly from the WRC.

RUN wget -qO /dev/null --keep-session-cookies --save-cookies /dev/stdout --post-data=
"UserName=$WRC_USERNAME&Password=$WRC_PASSWORD" 'https://login.intersystems.com/login
/SSO.UI.Login.cls?referrer=https%253A//wrc.intersystems.com/wrc/login.csp' \
 | wget -O - --load-cookies /dev/stdin "https://wrc.intersystems.com/wrc/WRC.StreamSe
rver.cls?FILE=/wrc/distrib/$cache-lnxrhx64.tar.gz" \
 | tar xvfzC - .

In this case, we should pass login password for the WRC. And you can add this lines in this file above.

ARG WRC_USERNAME=”username”
ARG WRC_PASSWORD=”password”

But you should know that in this case, login/password could be extracted from the image. So, it is not the secure
way.

And the preferable way, publish this file on internal FTP/HTTP server in the company.

RUN wget -O - "ftp://ftp.company.com/cache/$cache-lnxrhx64.tar.gz" \
 | tar xvfzC - .

Now we are ready to install.

RUN ./$cache-lnxrhx64/cinstall_silent

Once installation is being completed shutdown the instance.

RUN ccontrol stop $ISC_PACKAGE_INSTANCENAME quietly

But it is not over. We should have some control process In a Docker image and this task could be done by

Page 2 of 5

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCI_unix#GCI_unix_install_unattended

Containerization Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

ccontainermain project made by Luca Ravazzolo. So, download it directly from the github repository.

Caché container main process PID 1 (https://github.com/zrml/ccontainermain)
RUN curl -L https://github.com/zrml/ccontainermain/raw/master/distrib/linux/ccontaine
rmain -o /ccontainermain \
 && chmod +x /ccontainermain

Clean up the temporary folder.

RUN rm -rf $TMP_INSTALL_DIR

In case if your docker daemon uses overlay driver for storage, we should add this workaround to prevent
starting Cache with error <PROTECT>.

Workaround for an overlayfs bug which prevents Cache from starting with <PROT
ECT> errors
COPY ccontrol-wrapper.sh /usr/bin/
RUN cd /usr/bin \
 && rm ccontrol \
 && mv ccontrol-wrapper.sh ccontrol \
 && chmod 555 ccontrol

Where ccontrol-wrapper.sh, should contain

#!/bin/bash

Work around a werid overlayfs bug where files don't open properly if they hav
en't been
touched first - see the yum-ovl plugin for a similar workaround
if ["${1,,}" == "start"]; then
 find $ISC_PACKAGE_INSTALLDIR -name CACHE.DAT -exec touch {} \;
fi

/usr/local/etc/cachesys/ccontrol $@

You can use this command to check which driver is using docker.

docker info --format '{{.Driver}}'

Here we say that our image exposes two standard for Caché ports 57772 for web and 1972 for binary connections.

EXPOSE 57772 1972

And finally we should say how to execute our container.

ENTRYPOINT ["/ccontainermain", "-cconsole", "-i", "ensemble"]

In the end our file should look like this:

Page 3 of 5

https://community.intersystems.com/user/luca-ravazzolo
https://github.com/zrml/ccontainermain
https://github.com/zrml/ccontainermain

Containerization Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

FROM centos:6

MAINTAINER Dmitry Maslennikov <Dmitry.Maslennikov@csystem.cz>

update OS + dependencies & run Caché silent instal
RUN yum -y update \
 && yum -y install which tar hostname net-tools wget \
 && yum -y clean all \
 && ln -sf /etc/locatime /usr/share/zoneinfo/Europe/Prague

ARG password="Qwerty@12"
ARG cache=ensemble-2016.2.1.803.0

ENV TMP_INSTALL_DIR=/tmp/distrib

vars for Caché silent install
ENV ISC_PACKAGE_INSTANCENAME="ENSEMBLE" \
 ISC_PACKAGE_INSTALLDIR="/opt/ensemble/" \
 ISC_PACKAGE_UNICODE="Y" \
 ISC_PACKAGE_CLIENT_COMPONENTS="" \
 ISC_PACKAGE_INITIAL_SECURITY="Normal" \
 ISC_PACKAGE_USER_PASSWORD=${password}

set-up and install Caché from distrib_tmp dir
WORKDIR ${TMP_INSTALL_DIR}

ADD $cache-lnxrhx64.tar.gz .

cache distributive
RUN ./$cache-lnxrhx64/cinstall_silent \
 && ccontrol stop $ISC_PACKAGE_INSTANCENAME quietly \
Caché container main process PID 1 (https://github.com/zrml/ccontainermain)
 && curl -L https://github.com/daimor/ccontainermain/raw/master/distrib/linux/ccontai
nermain -o /ccontainermain \
 && chmod +x /ccontainermain \
 && rm -rf $TMP_INSTALL_DIR

WORKDIR ${ISC_PACKAGE_INSTALLDIR}

TCP sockets that can be accessed if user wants to (see 'docker run -p' flag)
EXPOSE 57772 1972

ENTRYPOINT ["/ccontainermain", "-cconsole", "-i", "ensemble"]

Now we are ready to build this image. Execute the following command in the same folder where you've placed our
Dockerfile, execute command

docker build -t ensemble-simple .

You will see all process of building an image, since downloading source image, to installation Ensemble.

To change default password or build of cache

docker build --build-arg password=SuperSecretPassword -t ensemble-simple .

Page 4 of 5

Containerization Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

docker build --build-arg cache=ensemble-2016.2.1.803.1 -t ensemble-simple .

And we are ready to run this image, with commad

docker run -d -p 57779:57772 -p 1979:1972 ensemble-simple

Here 57779 and 1979, are the ports which you can use to access to inside our container.

docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
5f8d2cb3745a ensemble-simple "/ccontainermain -..." 18 seconds ago
Up 17 seconds 0.0.0.0:1979->1972/tcp, 0.0.0.0:57779->57772/tcp keen_carson

This command shows all running containers with some details.

You can now open http://localhost:57779/csp/sys/UtilHome.csp. Our new system running and available.

Sources can be found here on GitHub.

UPD: Next part of this article have already available here.

#Cloud #Containerization #DevOps #Docker #System Administration #Caché

 Source URL:https://community.intersystems.com/post/containerization-cach%C3%A9

Page 5 of 5

http://localhost:57779/csp/sys/UtilHome.csp
https://github.com/daimor/docker-intersystems-examples/tree/master/simple
https://community.intersystems.com/post/containerization-cach%C3%A9-lets-add-our-application
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/containerization
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/system-administration
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/containerization-cach%C3%A9

