
Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mikhail Khomenko · Feb 13, 2017 14m read

Creating custom SNMP OIDs
This post is dedicated to the task of monitoring a Caché instance using SNMP. Some users of Caché are probably
doing it already in some way or another. Monitoring via SNMP has been supported by the standard Caché package
for a long time now, but not all the necessary parameters are available “out of the box”. For example, it would be
nice to monitor the number of CSP sessions, get detailed information about the use of the license, particular KPI’s
of the system being used and such. After reading this article, you will know how to add your parameters to Caché
monitoring using SNMP.

What we already have

Caché can be monitored using SNMP. A full list of what’s supported can be found in the files of the
<Install_dir>/SNMP/. You should find 2 files there: ISC-CACHE.mib and ISC-ENSEMBLE.mib. We are interested in
the file intended for Caché ̶ ISC-CACHE.mib. In particular, we’d like to know what information we can get about
licenses and sessions. The table contains corresponding OID’s provided that the hierarchy starts from the root for
InterSystems̶ 1.3.6.1.4.1.16563

OID Name Description Data type
.1.1.1.1.10 cacheSysLicenseUsed The current number of licenses used on

this Caché instance
INTEGER

.1.1.1.1.11 cacheSysLicenseHigh The high-water mark for licenses used on
this Caché instance

INTEGER

.1.2.16 cacheLicenseExceed A request for a license has exceeded the
licenses available or allowed

Trap message

.1.1.1.1.6 cacheSysCurUser Current number of users on this Caché
instance

INTEGER

The package lacks many important parameters, such as, for instance, the number of CSP sessions, license
information and, of course, does not have application-specific KPI’s.

Here is an example of what we’d like to know:

The number of CSP users;
Limitations of our license in terms of the user count;
License expiry date.

Let’s also add a few parameters for performance analysis. The parameters themselves are in the package, but we
want to know the increment per minute, for example:

The increase of the number of “global” references per minute;
The number of executed command per minute;
The number of routine calls per minute.

How to add “your” parameters

You can rely on the “Monitoring Caché using SNMP” document.

The Caché version of our test instance (CACHE2016) is 2016.2.0.721.0. The operating system is Linux Fedora 24

Page 1 of 9

https://community.intersystems.com/user/mikhail-khomenko
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCM_snmp

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

(Workstation Edition). Caché installation on Linux OS is described in detail on here.

Here is our agenda:

1. Create a class for collecting metrics;
2. Register and activate a new class in Caché using ^%SYSMONMGR;
3. Create a user MIB using MonitorTools.SNMP class methods. We’ll use 99990 as a temporary PEN (Private

Enterprise Number), but will need to register with IANA afterwards. This procedure is free, takes a week or
two and requires some email exchange along the lines of “what do you need your own PEN for?”;

4. Start a monitoring service with a connected Caché subagent;
5. Use snmpwalk to make sure we have access to all our newly-created OID’s;
6. Add our OID’s to to a third-party monitoring system. Let’s use Zabbix, for example. Zabbix documentation is

available here. Let’s make sure that monitoring is up and running;
7. Add the start of the system monitor in our TEST namespace to the system startup list.

Let’s now follow the agenda, point by point:

1. Create a class for collecting metrics

The metrics collection class extends %Monitor.Adaptor. In the Terminal we switch to the %SYS namespace and
export the hidden Monitor.Sample class:

%SYS>do $system.OBJ.Export("Monitor.Sample.cls","/tmp/Monitor_Sample.xml")
Exporting to XML started on 02/07/2017 21:39:56
Exporting class: Monitor.Sample
Export finished successfully.

Let’s assume that the TEST namespace is our working area. Let’s switch to it and import the Monitor.Sample class
here. Now, we create a class that describes the implementation of a monitoring mechanism for the 6 metrics
described in the “What we already have” section.

Class monitoring.snmp.Metrics Extends %Monitor.Adaptor
{
/// Give the application a name. This allows you to group different
/// classes together under the same application level in the SNMP MIB.
/// The default is the same as the Package name.
Parameter APPLICATION = "Monitoring";
/// CSP sessions count
Property Sessions As %Monitor.Integer;
/// License user limit
Property KeyLicenseUnits As %Monitor.Integer;
/// License key expiration date
Property KeyExpirationDate As %Monitor.String;
/// Global references speed
Property GloRefSpeed As %Monitor.Integer;
/// Number of commands executed
Property ExecutedSpeed As %Monitor.Integer;
/// Number of routine loads/save
Property RoutineLoadSpeed As %Monitor.Integer;
/// The method is REQUIRED. It is where the Application Monitor
/// calls to collect data samples, which then get picked up by the
/// ^SNMP server process when requested.
Method GetSample() As %Status
{
 set ..Sessions = ..getSessions()
 set ..KeyLicenseUnits = ..getKeyLicenseUnits()
 set ..KeyExpirationDate = ..getKeyExpirationDate()

 set perfList = ..getPerformance()
 set ..GloRefSpeed = $listget(perfList,1)
 set ..ExecutedSpeed = $listget(perfList,2)
 set ..RoutineLoadSpeed = $listget(perfList,3)

 quit $$$OK
}

Page 2 of 9

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCI_unix
http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=MonitorTools.SNMP
http://www.iana.org/
http://www.zabbix.com/download
https://www.zabbix.com/documentation/3.2/doku.php
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCM_healthmon#GCM_healthmon_appmon_user_classes

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

/// Get CSP sessions count
Method getSessions() As %Integer
{
 // This method will only work if we don't use WebAddon:
 // quit $system.License.CSPUsers()
 //
 // This will work even if we use WebAddon:
 set csp = ""
 try {
 set cn = $NAMESPACE
 znspace "%SYS"
 set db = ##class(SYS.Stats.Dashboard).Sample()
 set csp = db.CSPSessions
 znspace cn
 } catch e {
 set csp = "0"
 }
 quit csp
}
/// Get license user's power
Method getKeyLicenseUnits() As %Integer
{
 quit $system.License.KeyLicenseUnits()
}
/// Get license expiration date in human-readable format
Method getKeyExpirationDate() As %String
{
 quit $zdate($system.License.KeyExpirationDate(),3)
}
/// Get performance metrics (gloref, rourines etc.)
Method getPerformance(param As %String) As %Integer
{
 set cn = $NAMESPACE
 znspace "%SYS"
 set m = ##class(SYS.Monitor.SystemSensors).%New()
 do m.GetSensors()
 znspace cn
 quit $listbuild(m.SensorReading("GlobalRefsPerMin"),
 m.SensorReading("RoutineCommandsPerMin"),
 m.SensorReading("RoutineLoadsPerMin"))
}
}

Make sure that the GetSample() method really fetches the necessary data for us:

TEST>set metrics = ##class(monitoring.snmp.Metrics).%New()

TEST>write metrics.GetSample()
1
TEST>zwrite metrics
metrics=<OBJECT REFERENCE>[2@monitoring.snmp.Metrics]
+----------------- general information ---------------
| oref value: 2
| class name: monitoring.snmp.Metrics
| reference count: 2
+----------------- attribute values ------------------
| ExecutedSpeed = 431584
| GloRefSpeed = 881
| KeyExpirationDate = "2017-02-28"
| KeyLicenseUnits = 100
| RoutineLoadSpeed = 0
| Sessions = 1
+---

2. Let’s register and activate the new class in Caché using ^%SYSMONMGR

Open the terminal and switch to the TEST namespace:

csession cache2016 -U test
Node: server, Instance: CACHE2016
TEST>do ^%SYSMONMGR
1. Select item 5, Manage Application Monitor.

Page 3 of 9

mailto:2@monitoring.snmp.Metrics

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

2. Select item 2, Manage Monitor Classes.

3. Select item 3, Register Monitor System Classes.
Exporting to XML started on 02/09/2017 11:22:57
Exporting class: Monitor.Sample
Export finished successfully.
Load started on 02/09/2017 11:22:57
Loading file /opt/intersystems/cache2016/mgr/Temp/Mb7nvq5xuovdHQ.stream as xml
Imported class: Monitor.Sample
Compiling class Monitor.Sample
Compiling table Monitor.Sample
Compiling routine Monitor.Sample.1
Load finished successfully.

4. Select item 1, Activate/Deactivate Monitor Class
Class??
Num MetricsClassName Activated
1) %Monitor.System.AuditCount N
…
15) monitoring.snmp.Metrics N
Class? 15 monitoring.snmp.Metrics
Activate class? Yes => Yes

5. Select item 6, Exit

6. Select item 6 again, Exit

7. Select item 1, Start/Stop System Monitor

8. Select item 2, Stop System Monitor
Stopping System Monitor… System Monitor not running!

9. Select item 1, Start System Monitor
Starting System Monitor… System Monitor started

10. Select item 3, Exit

11. Select item 4, View System Monitor State
Component State
System Monitor OK
%SYS.Monitor.AppMonSensor OK

12. Select item 7, Exit

3. Create a user MIB

A user MIB is created with the help of MonitorTools.SNMP class methods. For this example, let’s use a fake PEN
(Private Enterprise Number), 99990, but the PEN will have to be registered with IANA afterwards. You can view
registered numbers here. For example, InterSystems’ PEN is 16563.

16563
InterSystems
Robert Davis
rdavis&intersystems.com

We will use the MonitorTools.SNMP class and its CreateMIB() method to create a MIB file. This method takes 10
arguments:

Argument name and type Description Value
AppName As %String application name Value of the APPLICATION parameter of the

metrics.snmp.Metrics class̶ Monitoring
Namespace As %String our namespace TEST

EntID As %Integer company PEN 99990 (fiction)

AppID As %Integer application OID inside the company 42
Company As %String company name (capital letters) fiction

Prefix As %String prefix of all SNMP objects we create fiction

Page 4 of 9

http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=MonitorTools.SNMP
http://pen.iana.org/pen/PenApplication.page
http://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=MonitorTools.SNMP
http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=MonitorTools.SNMP#METHOD_CreateMIB

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

Argument name and type Description Value
CompanyShort As %String short company prefix (capital letters) fict

MIBname As %String name of the MIB file ISC-TEST

Contact As %String contact information (address, in particular) Let’s leave the default value: Earth, Russia,
Somewhere in the forests, Subject: ISC-TEST.mib

List As %Boolean equivalent to verbose. Show task progress for the
MIB file

1

And here comes the creation of the MIB file:

%SYS>d ##class(MonitorTools.SNMP).CreateMIB("Monitoring","TEST",99990,42,"fiction","fict","fiction","ISC-TEST",,1)
Create SNMP structure for Application - Monitoring
 Group - Metrics
 ExecutedSpeed = Integer
 GloRefSpeed = Integer
 KeyExpirationDate = String
 KeyLicenseUnits = Integer
 RoutineLoadSpeed = Integer
 Sessions = Integer

Create MIB file for Monitoring
 Generate table Metrics
 Add object ExecutedSpeed, Type = Integer
 Add object GloRefSpeed, Type = Integer
 Add object KeyExpirationDate, Type = String
 Add object KeyLicenseUnits, Type = Integer
 Add object RoutineLoadSpeed, Type = Integer
 Add object Sessions, Type = Integer
MIB done.

There is new MIB ISC-TEST.mib in the <Install_dir>/mgr/TEST folder now.

4. Start the monitoring service with the connected Caché subagent

Let’s open the System Administration -> Security -> Services -> %Service_Monitor (click) -> Service Enabled
(check).

Page 5 of 9

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

We also specify that we want to start the SNMP subagent when Caché is started (click on Configure Monitor
Settings):

Page 6 of 9

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

In Linux, we use the net-snmp package for SNMP monitoring. So we install it, configure it to be used with
subagents and specify port 705 as the default one for the master agent to talk with subagents.

grep -i agentx /etc/services
agentx 705/tcp # AgentX
agentx 705/udp # AgentX

A small article about the snmpd.conf configuration file that complements the manual can be found on cyberciti.
Here is your final set of settings:

yum install net-snmp
grep '^[^#]' /etc/snmp/snmpd.conf
master agentx
agentXSocket TCP:localhost:705
com2sec local localhost public
group MyRWGroup v1 local
group MyRWGroup v2c local
group MyRWGroup usm local
view all included .1 80
view system included .iso.org.dod
access MyROGroup "" any noauth exact all none none
access MyRWGroup "" any noauth exact all all none
syslocation server (edit /etc/snmp/snmpd.conf)
syscontact Root <root@localhost> (configure /etc/snmp/snmp.local.conf)
dontLogTCPWrappersConnects yes

Let’s restart the snmpd and snmptrapd daemons in Linux. After that, we start the SNMP service to activate the
SNMP Caché subagent:

%SYS>do start^SNMP

%SYS>; Check SNMP subagent status

%SYS>zwrite ^SYS("MONITOR")
^SYS("MONITOR","SNMP")="RUN"
^SYS("MONITOR","SNMP","NAMESPACE")="%SYS"
^SYS("MONITOR","SNMP","PID")=5516
^SYS("MONITOR","SNMP","PORT")=705
^SYS("MONITOR","SNMP","STARTUP")="SNMP agent started on port 705, timeout=20, winflag=0, Debug=0"
^SYS("MONITOR","SNMP","STATE")="Terminated - 01/27/2017 04:15:01.2833PM"
^SYS("MONITOR","SNMP","WINSTART")=0

5. Check that only our own, newly-created user OID’s are available.

This can be done using snmpwalk ̶ we’ll display the OID showing the number of CSP sessions:

snmpwalk -On -v 2c -c public localhost 1.3.6.1.4.1.99990
snmpwalk -On -v 2c -c public localhost 1.3.6.1.4.1.99990
.1.3.6.1.4.1.99990.42.1.1.1.1.9.67.65.67.72.69.50.48.49.54 = INTEGER: 559851
.1.3.6.1.4.1.99990.42.1.1.1.2.9.67.65.67.72.69.50.48.49.54 = INTEGER: 973
.1.3.6.1.4.1.99990.42.1.1.1.3.9.67.65.67.72.69.50.48.49.54 = STRING: "2017-02-28"
.1.3.6.1.4.1.99990.42.1.1.1.4.9.67.65.67.72.69.50.48.49.54 = INTEGER: 100
.1.3.6.1.4.1.99990.42.1.1.1.5.9.67.65.67.72.69.50.48.49.54 = INTEGER: 0
.1.3.6.1.4.1.99990.42.1.1.1.6.9.67.65.67.72.69.50.48.49.54 = INTEGER: 2

If you get such result
.1.3.6.1.4.1.99990 = No Such Object available on this agent at this OID
try to restart SNMP subagent in Caché in this way:
do stop^SNMP
do start^SNMP

The ISC-TEST.mib file contains the sequence of our OID’s:

FictMetricsR ::=
 SEQUENCE {
 fictExecutedSpeed Integer32,

Page 7 of 9

http://www.net-snmp.org/docs/man/snmpd.conf.html
http://www.cyberciti.biz/nixcraft/linux/docs/uniqlinuxfeatures/mrtg/mrtg_config_step_3.php
mailto:root@localhost

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

 fictGloRefSpeed Integer32,
 fictKeyExpirationDate DisplayString,
 fictKeyLicenseUnits Integer32,
 fictRoutineLoadSpeed Integer32,
 fictSessions Integer32
 }

Accordingly, the number of sessions, for example, is the last OID 1.3.6.1.4.1.99990.42.1.1.1.6. You can compare it
with the number of sessions shown on the SMP dashboard:

6. Let’s add our OID’s to an external monitoring system.

Let’s use Zabbix. Zabbix documentation can be found here. A detailed Linux installation and configuration guide for
Zabbix is available here. Zabbix was selected as a system that not only allows you to draw charts, but also monitor
Plain Text (in our case, license expiry date and license units). After adding our 6 metrics to our local host items
(type: SNMPv2 agent) and creating 4 graphs and 2 PlainText parameters (as screen elements), we should see the
following picture:

Above is the information about license expiry and the number of available license slots. Graphs speak for
themselves.

7. Let’s add the launch of the system monitor to the startup list of our TEST namespace.

There is a pretty good document about user routines executed when Caché starts and stops. They are called
%ZSTART and %ZSTOP, accordingly.

What we are interested in is that the system monitor (^%SYSMONMGR) starts in the TEST namespace during the

Page 8 of 9

http://www.zabbix.com/download.php
http://www.zabbix.com/documentation.php
https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages
https://www.zabbix.com/documentation/3.0/manual/config/items/item
https://www.zabbix.com/documentation/3.0/manual/config/visualisation/graphs/custom
https://www.zabbix.com/documentation/3.0/manual/config/visualisation/screens
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GSTU_customize#GSTU_customize_startstop

Creating custom SNMP OIDs
Published on InterSystems Developer Community (https://community.intersystems.com)

system start. By default, this monitor only starts on the %SYS namespace. Therefore, we will only look at the
^%ZSTART program. The source is in %ZSTART.mac (create and save it to the %SYS namespace).

%ZSTART; User startup routine.
SYSTEM;
 ; Cache starting
 do $zu(9,"","Starting System Monitor in TEST namespace by ^%ZSTART...Begin")
 znspace "TEST"
 set sc = ##class(%SYS.Monitor).Start()
 do $system.OBJ.DisplayError(sc)
 if (sc = 1) {
 do $zutil(9,"","Starting System Monitor in TEST namespace by ^%ZSTART...OK")
 } else {
 do $zutil(9,"","Starting System Monitor in TEST namespace by ^%ZSTART...ERROR")
 }
 ; Starting SNMP
 znspace "%SYS"
 do start^SNMP
 quit
LOGIN;
 ; a user logs into Cache (user account or telnet)
 quit
JOB;
 ; JOB'd process begins
 quit
CALLIN;
 ; a process enters via CALLIN interface
 quit

Another way to do the same is using ^%SYSMONMGR:

%SYS>do ^%SYSMONMGR

1. Select item 3, Configure System Monitor Classes.

2. Select item 2, Configure Startup Namespaces.

3. Select item 2, Add Namespace.
Namespace? TEST

4. Select item 1, List Start Namespaces.
Option? 1
 TEST

5. Select item 4, Exit.

6. Select item 3, Exit.

7. Select item 8, Exit.

Let’s now restart Caché (if possible) to make sure that SNMP stats continue to be collected after a restart.

This is it. Perhaps, some will question my choice of monitored parameters or code, but the task was to show the
mere possibility of implementing such monitoring in principle. You can add extra parameters or refactor your code
later.

Thank you for your attention!

#Best Practices #Monitoring #System Administration #Visualization #Caché

 Source URL:https://community.intersystems.com/post/creating-custom-snmp-oids

Page 9 of 9

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/monitoring
https://community.intersystems.com/tags/system-administration
https://community.intersystems.com/tags/visualization
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/creating-custom-snmp-oids

