Visualizing the data jungle -- Part I. Let's make a graph
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Fabian Haupt - Jan 20,2017 g read

Visualizing the data jungle -- Part I. Let's make a graph

This is the first article of a series diving into visualization tools and analysis of time series data. Obviously we are
most interested in looking at performance related data we can gather from the Caché family of products. However,
as we'll see down the road, we are absolutely not limited to that. For now we are exploring python and the
libraries/tools available within that ecosystem.

The series is closely tying into Murray's excellent series about Caché performance and monitoring (see here) and
more specifically this article.

Disclaimer I: While | will be talking in passing about the interpretation of the data we are looking at, talking about
that in detail would distract too much from actual goal. | highly recommend Murray's series as a start, to get a basic
understanding of the subject matter.

Disclaimer II: There are gazillion tools out there that allow you to do visualization of the collected data. Many of
them work either directly with the data you get out of mgstat and friends, or only need minimal adjustment. This is
by no means a 'this solution is the best'-post. It is just one way I've found helpful and efficient to work with the data.

Disclaimer lll: Data visualization and analysis is a highly addictive, exciting, and fun field to dive into. You might
loose some free time over this. You have been warned!

So without further ado, let's dive into it.

Prerequisites

To get started, you will need some tools and libraries:
* Jupyter notebooks
* Python (3)
* various Python libraries we will be using down the road

Python (3) You will need Python on your machine. There are numerous ways to install it on various architectures. |
use homebrew on my mac, which made it easy:

brew install python3

Ask google for instructions for your favourite platform.

Jupyter notebooks: While not technically necessary, Jupyter notebooks make working on python scripts a breeze. It
allows you to interactively run and display python scripts from a browser window. It also allows collaborative
working on scripts. Since it makes it really easy to experiment and play with code, it's highly recommended.

pi p3 install jupyter

(again, talk to $search-engine ;)

Python libraries I'll mentioned the different python libraries while we're using them down the road. If you're getting

Page 1 of 5

https://community.intersystems.com/user/fabian-haupt-0
https://community.intersystems.com/post/intersystems-data-platforms-capacity-planning-and-performance-series-index
https://community.intersystems.com/post/extracting-pbuttons-data-csv-file-easy-charting
http://brew.sh/
http://jupyter.org/install.html

Visualizing the data jungle -- Part I. Let's make a graph
Published on InterSystems Developer Community (https://community.intersystems.com)

an error on an import statement, a good first guess is always to make sure you have the library installed:

pi p3 install matplotlib

Getting started

Assuming you have everything installed on your machine, you should be able to run

j upyter not ebook

from a directory.
This should automatically pull up a browser window with a simple UI.

’ JUpyter Logout
Files Running Clusters
Select items to perform actions on them. Upload New~ &
v @

Notebook list empty.

We'll go ahead and create a new notebook through the menu and add a couple of import statement to our first code-
cell (New -> Notebooks -> Python3):

i mport math

i mport pandas as pd

i mport npl _toolkits.axisartist as AA

fromnpl _tool kits.axes_gridl inmport host_subpl ot
i mport matplotlib.pyplot as plt

fromdatetine inmport datetine
frommatplotlib.dates inport DateFormatter

As for the libraries we are importing | just want to mention a few:

* Pandas "is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and
data analysis tools for the Python programming language."” Which allows as to work efficiently with big data sets.
While the datasets we get out of pButtons, are by no means 'big data'. We will however, take solace in the fact that
we could look at a lot of data at once. Imagine you had been collecting pButtons with 24h/2second sampling for the
last 20 years on your system. We could graph that.

* Matplotlib "matplotlib is a python 2D plotting library which produces publication quality figures in a variety of
hardcopy formats and interactive environments across platforms.” This will be the main graphing engine we are
going to use (for now).

If you are getting an error running the current code cell (shortcut: Ctrl+Enter) (list of shortcuts), be sure to check
that you have them installed.

You will also notice that | renamed the Untitled notebook, to do so, you can simply click on the title.

Loading some data

Page 2 of 5

http://pandas.pydata.org/
http://matplotlib.org/
https://www.cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/

Visualizing the data jungle -- Part I. Let's make a graph
Published on InterSystems Developer Community (https://community.intersystems.com)

Now that we layed some ground work, it is time to pull in some data. Luckily Pandas provides an easy way to load
CSV data. Since we happen to have a set of mgstat data lying around in csv-format, we'll just use that.

ngstatfile = '/ Users/kazamat zuri/work/ proj/vis-articles/partl/ngstat.txt'
data = pd.read_csv(
ngstatfile,
header =1,
parse_dates=[[0, 1]]
)

We are utilizing the readcsv _ command to directly read the mgstat data into a DataFrame. Check out the full
documentation for a comprehensive overview of the options. In short: we are simply passing in the file to read and
tell it that the second line (0 based!) contains the header names.

Since mgstat splits up the date and time fields into two fields, we also need have those combined with the
parsedates parameter.

data.info()

<cl ass ' pandas. core. frane. Dat aFrane' >
Rangel ndex: 25635 entries, 0 to 25634
Data colums (total 37 colums):

Dat e_ Ti me 25635 non-nul | dateti me64[ns]
G orefs 25635 non-null int64
Rem ef s 25635 non-null int64
GRratio 25635 non-null int64
PhyRds 25635 non-null int64
Rdrati o 25635 non-null float64
G oupds 25635 non-null int64
RemGupds 25635 non-null int64
Rour ef s 25635 non-null int64
RenRref s 25635 non-null int64
RoulLa$S 25635 non-null int64
RenmRLaS 25635 non-null int64
PhyW s 25635 non-null int64
WDQsz 25635 non-null int64
VDt mpg 25635 non-null int64
WDphase 25635 non-null int64
W JIwr i 25635 non-null int64
RouCMs 25635 non-null int64
Jrnwts 25635 non-null int64
ool Sz 25635 non-null int64
pGbl Nsz 25635 non-null int64
pCGbl Asz 25635 non-null float64
hj Sz 25635 non-null int64
pQbj Nsz 25635 non-null int64
pQhj Asz 25635 non-null int64
BDBSz 25635 non-null int64
pBDBNs z 25635 non-null int64
pBDBAsz 25635 non-null fl oat 64
Act ECP 25635 non-null int64
Addbl k 25635 non-null int64
Pr gBuf L 25635 non-null int64
PrgSrvR 25635 non-null int64
Byt Snt 25635 non-null int64
Byt Rcd 25635 non-null int64

Page 3 of 5

https://community.intersystems.com/post/extracting-pbuttons-data-csv-file-easy-charting
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

Visualizing the data jungle -- Part I. Let's make a graph
Published on InterSystems Developer Community (https://community.intersystems.com)

WDpass 25635 non-null int64
| JUcnt 25635 non-null int64
I JULock 25635 non-null int64

dtypes: datetine64[ns](1), float64(3), int64(33)
menory usage: 7.2 MB

gives us a nice overview of the DataFrame collected.

Working with the data

Since some the fieldnames contain spaces and "Date Time" is rather unwieldy, we'll go ahead and strip the strings
and rename the first column:

dat a. col utms=dat a. col unms. str.strip()
dat a=dat a. r enane(col ums={"' Date_ Tinme':' DateTinme'})

The DataFrame defaults to a Rangelndex. This isn't very useful to look at our data. Since we have a rather
practical DateTime column available, we'll go ahead and set that as index:

dat a. i ndex=dat a. Dat eTi e

Now we are ready to create an initial version of our plot. Since this is always one of the first things to look at, let's
use Glorefs for this:

plt.figure(num=None, figsize=(16,5), dpi=80, facecolor="w, edgecolor="k")
plt.xticks(rotation=70)
pl t. pl ot (dat a. Dat eTi ne, data. d orefs)

plt.show()

First we tell the library which size we want the graph in. We also want the x-axis lables to be rotated a bit, so they
don't overlap.
Finally we plot DateTime vs Glorefs and show the graph. This gives us something like the following graph.

We can easily replace Glorefs with any of the other columns to get a general idea of what is going on.

Combining graphs

Sometime is is quite helpful to look at multiple graphs at once. So the idea to draw multiple plots into one graph
seems natural.
While it is very straightforward to do that with matplotlib alone:

pl t.pl ot (data. Dat eTi ne, dat a. A orefs)
plt.pl ot (data. Dat eTi me, dat a. PhyRds)

plt.show()

This will give us pretty much the same graph as before. The problem of course being the y-scale. Since Glorefs
goes up into the millions, while PhyRds are usually in the 100s (to thousands), we don't see those.

Page 4 of 5

Visualizing the data jungle -- Part I. Let's make a graph
Published on InterSystems Developer Community (https://community.intersystems.com)

To solve this we'll need to use the previously imported axisartist toolkit.

plt.gcf()

plt.figure(numNone, figsize=(16,5), dpi=80, facecolor="w ,k edgecolor="k")
host = host _subpl ot (111, axes_cl ass=AA. Axes)

pl t. subpl ots_adj ust (ri ght=0. 75)

par 1 host . t wi nx()

par 2 host . t wi nx()

of fset = 60

new fixed_axis = par2.get_grid_hel per().new fixed_axis

par2.axis["right"] = new fixed_axis(loc="right", axes=par 2, of fset=(offset, 0))
par 2. axi s["right"].toggl e(all=True)

host . set _xl abel ("ti me")
host . set _yl abel ("d orefs")
parl.set_yl abel ("Rdratio")
par 2. set _yl abel (" PhyRds")

pl, =host . pl ot (data. d orefs, | abel ="d orefs")

p2, =par 1. pl ot (data. Rdrati o, | abel ="Rdrati o")

p3, =par 2. pl ot (dat a. PhyRds, | abel =" PhyRds")

host . | egend()

host . axis["left"].| abel.set_col or(pl.get_color())

parl.axis["right"].label.set_col or(p2.get_color())
par2.axis["right"].label.set_col or(p3.get_color())

plt.draw()
plt.show()

The short summary is: we'll add two y-axis to the plot, which will have their own scaling. While we implicetely used
the subplot in our first example, in this case we need to access it directly to be able to add the axis and labels.

We set a couple of labels and the colors. After adding a legend and connecting the colors to the different plots we
end up with an image like this:

Final comments

This already gives us a couple of very powerful tools to plot our data. We explored how to load mgstat data and
create some basic plots. In the next part, we will play with different output formats for our graphs and pull in some
more data.

Comments and questions are encouraged! Share your experiences!

-Fab

ps. the notebook for this is available here

#Big Data #Object Data Model #Python #Tools #Visualization #Caché

Source URL:https://community.intersystems.com/post/visualizing-data-jungle-part-i-lets-make-graph

Page 5 of 5

https://github.com/kazamatzuri/vis-part1
https://community.intersystems.com/tags/big-data
https://community.intersystems.com/tags/object-data-model
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/tools
https://community.intersystems.com/tags/visualization
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/visualizing-data-jungle-part-i-lets-make-graph

