
Binding of the "this" variable in Zen custom components
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Pravin Barton · Jan 13, 2017 2m read

Binding of the "this" variable in Zen custom components
I thought I'd share some issues I had today with Zen development in a custom component. Say we have created a
Zen composite component with a few javascript methods that modify its child components. In order to modify these
components, we can use something like the following method:
 ClientMethod exampleFunction() [Language = javascript]
{
 var component = this.getChildById('Control1');
 component.setValue('');
}

In JavaScript methods on the client, this refers to the current component or page. The equivalent for expressions
that are values of XML attributes is zenThis (see documentation).

However, say that we want a time interval before the method gets called. We can create a wrapper method that
uses the Javascript setTimeout() method.
 ClientMethod exampleTimer() [Language = javascript]
{
 setTimeout(this.exampleFunction, 1000);
}

If we run exampleTimer(), we get the following error:
TypeError: this.getChildById is not a function

Why can't we call getChildById? The problem is with object binding. Here's a good explanation of the issues with
Javascript binding by Christophe Porteneuve. When we call a method directly through its object, this is bound to
that object (in this case, the composite component). But when we pass the method into setTimeout(), it's being
called indirectly as a reference. As a result we experience a binding loss. The method is no longer bound to its
parent object, and this reverts to referencing the window object.

A possible solution is to use a zenPage method to get a reference to the composite component. But this defeats
the purpose of a custom component, which is to encapsulate code in a black box. We shouldn't need to know how
to locate the component on the Zen page. The Porteneuve article includes a few solutions, including explicitly
specifying binding with the apply method. In my case, the easiest solution was to avoid binding by passing in the
component as an argument.
 ClientMethod exampleFunction(composite) [Language = javascript]
{
 var component = composite.getChildById('Control1');
 component.setValue('');
}

ClientMethod exampleTimer() [Language = javascript]
{
 setTimeout(this.exampleFunction, 1000, this);
}

#JavaScript #ZEN #Caché

 Source URL:https://community.intersystems.com/post/binding-variable-zen-custom-components

Page 1 of 1

https://community.intersystems.com/user/pravin-barton
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GZAP_page_really_programming#GZAP_special_variables_this
http://alistapart.com/article/getoutbindingsituations
https://community.intersystems.com/tags/javascript
https://community.intersystems.com/tags/zen
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/binding-variable-zen-custom-components

